Skip to main content

Advertisement

Log in

Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, a ternary nanocomposite of reduced graphene oxide (rGO), manganese dioxide (MnO2), and polypyrrole (PPy) was synthesized and characterized and presented electrochemical performances of supercapacitor devices. Four types of activated and inactivated materials (rGO/MnO2, rGO/MnO2*, rGO/MnO2/PPy, and rGO/MnO2*/PPy) were investigated by Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR), scanning electron microscopy-energy dispersion X-ray analysis (SEM-EDX), Raman spectroscopy, Brunauer-Emmett-Teller (BET) surface analysis, thermogravimetric (TGA-DTA) analysis, cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) analysis. Synthesis procedures are easy and low cost and have good conductivity performances compared with other methods. Activated MnO2* and inactivated MnO2 were used in the nanocomposite system. The highest specific capacitance was obtained as Csp = 348.11 F/g at 0.5 mA for rGO/MnO2* nanocomposite by GCD method. The spectroscopic, morphologic, pore size, thermogravimetric, and electrochemical differences of activated and inactivated MnO2 materials are presented in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y (2012) Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater Chem Phys 132:596–600

    CAS  Google Scholar 

  2. Li GR, Feng ZP, Zhang JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183

    CAS  Google Scholar 

  3. Aradilla D, Estrany F, Aleman C (2011) Symmetric supercapacitors based on multilayers of conducting polymers. J Phys Chem C 115:8430–8438

    CAS  Google Scholar 

  4. Wang EQ, Mu JC, Zhang YL, Wang QN, Zhang LP (2020) Superior capacitive performance of active carbons derived from Loofah sponge. J Nanosci Nanotechnol 20:2416–2422

    CAS  PubMed  Google Scholar 

  5. Yin QW, He LW, Lian JQ, Sun JJ, Xiao SF, Luo JJ, Sun DY, Xie A, Lin BZ (2019) The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 155:147–154

    CAS  Google Scholar 

  6. Zhou ZK, Shao Y, Gao X, Liu ZT, Zhang Q (2019) Structural regulation of polypyrrole nanospeheres guided by hydrophobic chain length of sufactants. J Mater Sci 54:14309–14319

    CAS  Google Scholar 

  7. Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V (2020) Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem 40:120–131

    Google Scholar 

  8. Zhan CZ, Zeng XJ, Ren XL, Shen Y, Lv RT, Kang FY, Huang ZH (2020) Dual-ion hybrid supercapacitor: integrating of Li-ion hybrid supercapacitor and dual-ion battery realized by porous graphitic carbon. J Energy Chem 42:180–184

    Google Scholar 

  9. Cheng Y, Guo MS, Zhai MM, Yu YA, Hu JB (2020) Nickel nanoparticles anchored onto Ni foam for supercapacitors with high specific capacitance. J Nanosci Nanotechnol 20:2402–2407

    CAS  PubMed  Google Scholar 

  10. Rajagopal R, Ryu KS (2020) Temperature controlled synthesis of Ce-MoO2 nanostructure: promising electrode material for supercapacitor applications. Sci Adv Mater 12:461–469

    CAS  Google Scholar 

  11. Mohankali K, Thangavel NK, Ding Y, Putatunda SK, Arava LMR (2019) Interfacial behavior of water in salt electrolytes at porous electrodes and its effect on supercapacitor. Electrochim Acta 326:Article number: UNSP 134989

  12. Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V (2020) Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem 40:120–131

    Google Scholar 

  13. Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727–7734

    CAS  Google Scholar 

  14. Du X, Wang CY, Chen MM, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646

    CAS  Google Scholar 

  15. Jiang P, Chen CC, Li DG (2019) Polypyrrole-decorated, miller carbon fibers inserted chitin nanofibers/multiwalled carbon nanofibers/multiwalled carbon nanotubes flexible free-standing film for supercapacitors. Polym Compos 40:4311–4320

    CAS  Google Scholar 

  16. Purushothaman KK, Saranakumar B, Babu IM, Sethuraman B, Muralidharan G (2014) Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 4:23485–23491

    CAS  Google Scholar 

  17. Purushothaman KK, Babu IM, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773

    CAS  PubMed  Google Scholar 

  18. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490

    CAS  PubMed  Google Scholar 

  19. Lu YT, Wu JY, Lin ZX, You TH, Lin SC, Chen HYT, Hardwick LJ, Hu CC (2019) Enhanced oxygen evolution performance of spinel Fe0.1Ni0.9Co2O4/activated carbon composites. Electrochim Acta 326:UNSP:134986

  20. Komarnei S, Rajha RK, Katsuki H (1999) Microwave-hydrothermal processing of titanium dioxide. Mater Chem Phys 61:50–64

    Google Scholar 

  21. Hu H, Wang X, Liu F, Wang J, Xu C (2011) Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites: optical and photocatalytic properties. Synth Met 161:404–410

    CAS  Google Scholar 

  22. Ramadoss A, Kim SJ (2013) Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445

    CAS  Google Scholar 

  23. Hsieh YP, Chiang WY, Tsai SL, Hofmann M (2016) Sclable production of graphene with tunable and stable doping by electrochemical intercalation and exfoliation. Phys Chem Chem Phys 18:339–343

    CAS  PubMed  Google Scholar 

  24. Yang Y, Qiao B, Yang X, Fang L, Pan C, Song W, Hou H, Ji X (2014) Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv Funt Mater 24:4349–4356

    CAS  Google Scholar 

  25. Song W, Ji X, Deng W, Chen Q, Shen C, Banks CE (2014) Graphene ultracapacitors: structural impacts. Phys Chem Chem Phys 15:4799–4803

    Google Scholar 

  26. Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    CAS  Google Scholar 

  27. Zhao J, Xie Y, Le Z, Yu J, Gao Y, Zhang R, Qin Y, Huang Y (2013) Preparation and characterization of an electromagnetic material: The graphene nanosheet/polythiophene composite. Synth Met 181:110–116

    CAS  Google Scholar 

  28. Hou Y, Lohe MR, Zhang J, Liu S, Zhung X, Feng X (2016) Vertically oriented cobalt selenide/Ni/Fe layered-double hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ Sci 9:478–483

    CAS  Google Scholar 

  29. Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funt Mater 25:872–882

    CAS  Google Scholar 

  30. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Free-standing three-dimensional graphene/MnO2 composite networks as ultra-light and flexible supercapacitor electrodes. ACS Nano 7:174–182

    PubMed  Google Scholar 

  31. Zhang Y, Zhou Z, Chen T, Wang H, Lu W (2014) Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26:2114–2122

    Google Scholar 

  32. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384

    CAS  Google Scholar 

  33. Wen Y, Huang C, Wang L, Hulicova-Jurcakova D (2014) Heteroatom-doped graphene for electrochemical energy storage. Chin Sci Bull 59:2102–2121

    CAS  Google Scholar 

  34. Abouimrane A, Compton OC, Amine K, Nquyen ST (2010) Non-amealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114:12800–12804

    CAS  Google Scholar 

  35. Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Graphene as a conductive additive to enhance the high rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55:5813–5818

    CAS  Google Scholar 

  36. Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO2 by the effect of a surface active agent. Electrochem Solid-State Lett 8:A373–A377

    CAS  Google Scholar 

  37. Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426

    CAS  Google Scholar 

  38. Kwon KD, Refson K, Sposito G (2009) On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite. Geochim Cosmochim Acta 73:4142–4150

    CAS  Google Scholar 

  39. Yang MQ, Xu YJ (2013) Selective photo-redox using graphene-based composite. Photocatalysts 15:19102–19118

    CAS  Google Scholar 

  40. Xiong P, Ma R, Sakai N, Bai X, Li S, Sasaki T (2017) Redox active cation intercalation/deintercalation in two dimensional layered MnO2 nanostructures for high-rate electrochemical energy storage. ACS Appl Mater Interfaces 9:6282–6291

    CAS  PubMed  Google Scholar 

  41. Wang L, Ouyang Y, Jiao X, Xia X, Lei W, Hao Q (2018) Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem Eng J 334:1–9

    CAS  Google Scholar 

  42. Zhang X, Wang T, Jiang C, Zhang F, Li W, Tang Y (2016) Manganese dioxide/carbon nanotubes composite with optimized micro structure via room temperature solution approach for high performance lithium-ion battery anodes. Electrochim Acta 187:465–472

    CAS  Google Scholar 

  43. Meng X, Lu L, Sun C (2018) Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl Mater Interfaces 10:16474–16481

    CAS  PubMed  Google Scholar 

  44. Ali GAM, Yusoff MM, Ng YH, Lim HN, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: a comparison study. Curr Appl Phys 15:1143–1147

    Google Scholar 

  45. Wang Z, Zhu X, Wei B (2016) Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability. Electrochim Acta 222:1585–1591

    Google Scholar 

  46. Huang M, Li F, Dong F, Zhang X, Li L (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A Mater Energy Sustain 3:21380–21423

    CAS  Google Scholar 

  47. Julien C, Mauger A (2017) Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 7:Article number:396

  48. Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high performance, flexible planar supercapacitors. Nano Lett 13:2151–2157

    CAS  PubMed  Google Scholar 

  49. Zhao J, Nan J, Zhao Z, Li N, Liu J, Cui F (2017) Energy-efficient fabrication of a novel multi-valance Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation. Appl Catal B Environ 202:509–517

    CAS  Google Scholar 

  50. Das S, Samanta A, Jana S (2017) Light-assisted synthesis of hierarchical flower-like MnO2 nanocomposites with solar light induced enhanced photocatalytic activity. ACS Sustain Chem Eng 5:9086–9094

    CAS  Google Scholar 

  51. Zhao S, Liu T, Hou D, Zeng W, Miao B, Hussain S, Peng X, Javed MS (2015) Controlled synthesis of hierarchical birnessite-type MnO2, nanoflowers for supercapacitor applications. Appl Surf Sci 356:259–265

    CAS  Google Scholar 

  52. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    CAS  Google Scholar 

  53. Li ZS, Liu ZS, Li BL, Li DH, Liu ZH, Wang HQ, Li QY (2016) Large area synthesis of well-dispersed β-MnO2 nanorods and their electrochemical supercapacitive performances. J Taiwan Inst Chem Eng 65:544–551

    CAS  Google Scholar 

  54. Zhang H, Wang J, Shan Q, Zhi W, Wang S (2013) Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials. Electrochim Acta 90:535–541

    CAS  Google Scholar 

  55. Peng X, Huo K, Fu J, Zhang X, Gao B, Chu PK (2013) Coaxial PANI/TiN/PANI nanotube arrays for high-performance supercapacitor electrodes. Chem Commun 49:10172–10174

    CAS  Google Scholar 

  56. Castagno KRL, Dalmoro V, Mauler RS, Azambuja DS (2010) Characterization and corrosion properties of polypyrrole/montmorillonite electropolymerized onto aluminium alloy 1100. J Polym Res 17:647–655

    CAS  Google Scholar 

  57. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 43:797–828

    Google Scholar 

  58. Chen L, Sun LJ, Luan F, Liang Y, Li Y, Liu XX (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747

    CAS  Google Scholar 

  59. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    CAS  PubMed  Google Scholar 

  60. Wang X, Jia L, Liu Q, Liu J, Guo X, Jing X, Wang J (2016) Synthesis of 3D flower-like Co3O4/polypyrrole nanosheet networks electrode for high performance supercapacitors. Colloids Surf A Physicochem Eng Asp 506:646–653

    CAS  Google Scholar 

  61. Chen GF, Su YZ, Kuang PY, Liu ZQ, Chen DY, Wu X, Li N, Qiao SZ (2015) Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. Chem Eur J 21:4614–4621

    CAS  PubMed  Google Scholar 

  62. Wu J, Zhang QE, Wang J, Huang X, Bai H (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 11:1280–1286

    CAS  Google Scholar 

  63. Lin XQ, Xu YH (2008) Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes. Electrochim Acta 53:4990–4997

    CAS  Google Scholar 

  64. Frackowiak E, Jurewicz K, Delpeux S, Beguin F (2001) Nanotubular materials for supercapacitors. J Power Sources 97-98:822–825

    CAS  Google Scholar 

  65. Snook GA, Chen GZ (2008) The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. J Electroanal Chem 612:140–146

    CAS  Google Scholar 

  66. Zhou ZK, Shao Y, Gao X, Liu ZT, Zhang Q (2019) Structural regulation of polypyrrole nanospheres guided by hydrophobic chain length of surfactants. J Mater Sci 54:14309–14319

    CAS  Google Scholar 

  67. Chang HH, Chang CK, Tsai YC, Liao CS (2012) Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50:2331–2336

    CAS  Google Scholar 

  68. Liang X, Long GH, Fu CW, Pang MJ, Xi YL, Li JZ, Han W, Wei GD, Ji Y (2018) High performance all solid state flexible supercapacitor for wearable storage device application. Chem Eng J 345:186–195

    CAS  Google Scholar 

  69. Russo PA, Lima S, Rebuttini V, Pillinger M, Willinger MG, Pinna N, Valenta AA (2013) Microwave-assisted coating of carbon nanostructures with titanium dioxide for the catalytic dehydration of D-xylose into furfural. RSC Adv 3:2595–2603

    CAS  Google Scholar 

  70. Pattanayak P, Papiya F, Kumar V, Pramanik N, Kundu PP (2019) Deposition of Ni–NiO nanoparticles on the reduced graphene oxide filled polypyrrole: evaluation as cathode catalyst in microbial fuel cells. Sustain Energy Fuels 3:1808–1826

    CAS  Google Scholar 

  71. Hu J, Shen Y, Xu J, Huang H (2019) Synthesis of urchin-like MnO2/reduced graphene oxide (RGO) composite and their wave-absorbing property. Mater Res Express 6:095002–095010

    CAS  Google Scholar 

  72. Ramesh S, Haldorai Y, Kim HS, Kim JH (2017) A nanocrystalline Co3O4@ polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Adv 7:36833–36843

    CAS  Google Scholar 

  73. Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for polypyrrole nanocomposites. Macromolecules 48:1592–1597

    CAS  Google Scholar 

  74. Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116:5420–5426

    CAS  Google Scholar 

  75. Hu J, Shen Y, Xu J, Huang H, Mariappan CR, Gajraj V, Gade S, Kumar A, Dsoke S, Indris S, Ehrenberg H, Prakash GV, Jose R (2019) Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. J Electroanal Chem 845:72–83

    Google Scholar 

  76. Zhang YH, Tang ZR, Fu X, Xu YJ (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5:7426–7435

    CAS  PubMed  Google Scholar 

  77. Gao Y, Wei Z, Xu J (2020) High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-Layered double hydroxides. Electrochim Acta 330:Article number:135195.

  78. Liu HD, Hu ZL, Su YY, Ruan HB, Hu R, Zhang L (2017) MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries. Appl Surf Sci 392:777–784

    CAS  Google Scholar 

  79. Naumenko D, Snitka V, Snopok B, Arpiainen S, Lipsanen H (2012) Graphene-enhanced Raman imagining of TiO2 nanoparticles. Nanotechnology 23, Article ID: 465703

  80. Gao T, Glerup M, Krumaich F, Nesper R, Fjelluag H, Norby P (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C 112:13134–13140

    CAS  Google Scholar 

  81. Ghanbari KH, Nejabati F (2019) Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. J Food Meas Charact 13:1411–1422

    Google Scholar 

  82. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  PubMed  Google Scholar 

  83. Dong ZH, Wei YL, Shi W, Zhang GA (2011) Characterization of doped polypyrrole/manganese oxide nanocomposite for supercapacitor electrodes. Mater Chem Phys 131:529–534

    CAS  Google Scholar 

  84. Gao YP, Huang KJ, Wu X, Hou ZQ, Liu YY (2018) MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. J Alloys Compd 741:174–181

    CAS  Google Scholar 

  85. Gao YP, Zhai ZB, Wang QQ, Hou ZQ, Huang KJ (2019) Cycling profile of layered MgAl2O4/reduced graphene oxide composite for asymmetrical supercapacitor. J Colloid Interface Sci 539:38–44

    CAS  PubMed  Google Scholar 

  86. Batool A, Kanwal F, Imran M, Jamil T, Siddiqi SA (2012) Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth Met 161:2753–2758

    Google Scholar 

  87. Satpal S, Bhopale A, Deshpande P, Athawale A (2019) Fabrication of ZnO-functionalized polypyrrole microcomposite as a protective coating to enhance anticorrosion performance of low carbon mild steel. J Appl Polym Sci 136:48319–48328

    Google Scholar 

  88. Gao YP, Huang KJ, Zhang CX, Song SS, Wu X (2018) High performance symmetric supercapacitor based on flower-like zinc molybdate. J Alloys Compd 731:1151–1158

    CAS  Google Scholar 

  89. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    CAS  PubMed  Google Scholar 

  90. Luo Y, Zhang Q, Hong W, Xiao Z, Bai H (2018) A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper (II) ion active electrolyte. Phys Chem Chem Phys 20:131–136

    CAS  Google Scholar 

  91. Wei H, He C, Liu J, Gu H, Wang Y, Yan X, Guo J, Ding D, Shen NZ, Wang X, Wei S (2015) Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage. Polymer 67:192–199

    CAS  Google Scholar 

  92. Yang Y, Xi Y, Li J, Wei G, Klyui NI, Han W (2017) Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett 12:394

    PubMed  PubMed Central  Google Scholar 

  93. Pang MJ, Long GH, Jung S, Ji Y, Han W, Wang B, Liu XL, Xi YL, Wang DX, Xu FZ (2015) Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors. Chem Eng J 280:377–384

    CAS  Google Scholar 

  94. Khoh WH, Hong JD (2014) Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in gel electrolyte. Colloids Surface A Physicochem Eng Aspects 456:26–34

    CAS  Google Scholar 

  95. El-Khodary SA, Yahia IS, Zahran HY, Ibrahim M (2019) Preparation of polypyrrole-decorated MnO2/reduced graphene oxide in the presence of multi-walled carbon nanotubes composite for high performance asymmetric supercapacitors. Phys B Condens Matter 556:66–74

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the TUBITAK for its economic support for 2209A student project.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to Murat Ates.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Mizrak, I., Kuzgun, O. et al. Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics 26, 4723–4735 (2020). https://doi.org/10.1007/s11581-020-03605-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03605-6

Keywords

Navigation