Skip to main content
Log in

Trophic ecology and metabolism of two species of nonnative freshwater stingray (Chondrichthyes: Potamotrygonidae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The stingrays Potamotrygon amandae and Potamotrygon falkneri are nonnative species established in the Upper Paraná basin. Although they are widely distributed, few studies on their diets or respective metabolic responses exist. Therefore, the aim was to evaluate the dietary composition, trophic niche breadth and lipid/protein concentrations in muscle and hepatic tissues of these two species, as well as the interrelationships between them. The individuals were collected in two areas on the Upper Paraná River. The stomachs and samples of muscle and liver tissues were taken for analysis. A broad dietary spectrum was observed for both species, along with differences in dietary composition, with a higher consumption of detritus by P. amandae and Baetidae by P. falkneri. No differences were observed in the trophic niche breadth. Regarding the metabolic variables, differences were only found in the hepatic protein, with a higher content observed in P. falkneri. A significant positive correlation was observed between items of animal origin and detritus with muscle protein for this species. This shows that such feeding habits, which are characteristic of a generalist, influenced the metabolism of the species and possibly contributed to the successful adjustment of the species to new habitats in the Upper Paraná River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil, 1st ed. Eduem, Maringá.

    Google Scholar 

  • Aguiar, A. A. & J. L. Valentin, 2010. Biologia e ecologia alimentar de elasmobrânquios (Chondrichthyes: Elasmobranchii): uma revisão dos métodos e do estado da arte no Brasil. Oecologia Australis 14: 464–489.

    Article  Google Scholar 

  • Ahlbeck, I., S. Hansson & O. Hjerne, 2012. Evaluating fish diet analysis methods by individual-based modelling. Canadian Journal of Fisheries and Aquatic Sciences 69: 1184–1201.

    Article  CAS  Google Scholar 

  • Almeida, M. P., P. M. O. Lins, P. Charvet-Almeida & R. B. Barthem, 2010. Diet of the freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae) on Marajó Island (Pará, Brazil). Brazilian Journal of Biology 70: 155–162.

    Article  CAS  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.

    Article  PubMed  Google Scholar 

  • Aschliman, N. C., M. Nishida, M. Miya, J. G. Inoue, K. M. Rosana & G. J. P. Naylor, 2012. Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Molecular Phylogenetics and Evolution 63: 28–42.

    Article  PubMed  Google Scholar 

  • Ballantyne, J. S. & J. W. Robinson, 2010. Freshwater elasmobranchs: a review of their physiology and biochemistry. Journal os Comparative Physiology B 180: 475–493.

    Article  Google Scholar 

  • Beaulieu, M. A. & H. Guderley, 1998. Changes in qualitative composition of white muscle with nutritional status of Atlantic cod, Gadus morhua. Comparative Biochemistry and Physiology Part A 121: 135–141.

    Article  CAS  Google Scholar 

  • Belluco, S., C. Losasso, M. Maggioletti, C. Alonzi, M. G. Paoletti & A. Ricci, 2013. Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviewsin Food Science and Food Safety 12: 296–313.

    Article  CAS  Google Scholar 

  • Bicudo, C. E. M. & R. M. T. Bicudo, 1970. Algas de águas continentais brasileiras: chave de ilustrada para identificação de gêneros, 1st ed. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São Paulo.

    Google Scholar 

  • Blackburn, T. M., P. Pysek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarosik, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.

    Article  PubMed  Google Scholar 

  • Bloom, D. D. & N. R. Lovejoy, 2017. On the origins of marine-derived freshwater fishes in South America. Journal of Biogeography 44: 1927–1938.

    Article  Google Scholar 

  • Bone, Q. & B. L. Roberts, 1969. The density of elasmobranchs. Journal of the Marine Biological Association of the United Kingdom 49: 913–937.

    Article  Google Scholar 

  • Bukkens, S. G. F., 2005. Insects in the human diet: nutritional aspects. In Paoletti, M. G. (ed.), Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails, 1st ed. Science Publisher, Enfield.

    Google Scholar 

  • Bukkens, S. G. F., 1996. The nutritional value of edible insects. Ecology of Food and Nutrition 36: 287–319.

    Article  Google Scholar 

  • Celestino, L. F., F. J. Sanz-Ronda, L. E. Miranda, M. C. Makrakis, J. H. P. Dias & S. Makrakis, 2019. Bidirectional connectivity via fish ladders in a large Neotropical river. River Research and Applications 35: 236–246.

    Article  Google Scholar 

  • Companhia Energética de São Paulo - CESP.2013. Programa de manejo pesqueiro 2012–2013 Relatório GA/200/2013. São Paulo. 113 p. http://licenciamento.ibama.gov.br/Hidreletricas/Jupia/Manejo Pesqueiro e Limnologia/PMP 2012–2013/RT GA 200 2013 PMP-versão enviada ao IBAMA MPF IMASUL.pdf.

  • Companhia Energética de São Paulo - CESP, 2006. 40 Peixes do Brasil. In Shibatta, O. A. & J. H. P. Dias (eds). Doiis, Rio de Janeiro.

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Delariva, R. S., N. S. Hahn & E. A. L. Kashiwaqui, 2013. Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects. Neotropical Ichthyology 11: 891–904.

    Article  Google Scholar 

  • Folch, J., M. Lees & G. H. Sloane Stanley, 1959. A simple method for the isolation and purification of total lipides from animal tissues. Canadian Journal of Biochemistry and Physiology 37: 497–509.

    Google Scholar 

  • Fontenelle, J. P., T. S. Loboda, M. Kolmann & M. R. Carvalho, 2017. Angular cartilage structure and variation in neotropical freshwater stingrays (Chondrichthyes: Myliobatiformes: Potamotrygonidae), with comments on their function and evolution. Zoological Journal of the Linnean Society 183: 121–142.

    Article  Google Scholar 

  • Frings, C. S., T. W. Fendley, R. T. Dunn & C. A. Queen, 1972. Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clinical Chemistry 18: 673–674.

    Article  CAS  PubMed  Google Scholar 

  • Gama, C. S. & R. S. Rosa, 2015. Uso de Recursos e Dieta das Raias de Água Doce (Chondrichthyes, Potamotrygonidae) da Reserva Biológica do Parazinho, AP. Biota Amazônia 5: 90–98.

    Google Scholar 

  • Garrone-Neto, D. & I. Sazima, 2009a. The more stirring the better: cichlid fishes associate with foraging potamotrygonid rays. Neotropical Ichthyology 7: 499–501.

    Article  Google Scholar 

  • Garrone-Neto, D. & I. Sazima, 2009b. Stirring, charging, and picking: Hunting tactics of potamotrygonid rays in the upper Paraná River. Neotropical Ichthyology 7: 113–116.

    Article  Google Scholar 

  • Garrone-Neto, D., V. Haddad Jr. & O. B. F. Gadig, 2014. Record of ascending passage of potamotrygonid stingrays through navigation locks: implications for the management of non-native species in the Upper Paraná River basin, Southeastern Brazil. Management of Biological Invasions 5: 113–119.

    Article  Google Scholar 

  • Garrone-Neto, D., V. Haddad Jr., M. J. A. Vilela, O. B. F. Gadig & V. S. Uieda, 2016. Raias do alto Paraná, Brasil: histórico de ocorrência, distribuição atual e consequências do processo de colonização da bacia. In Lasso, C. A., R. Rosa, M. A. Morales-Betancourt, D. Garrone-Neto & M. R. Carvalho (eds), Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte II: Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina (JAVEGRAF). Instituto Humboldt, Bogotá.

    Google Scholar 

  • Guderley, H., 2004. Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status. Comparative Biochemistry and Physiology Part B: 139: 371–382.

    Article  CAS  Google Scholar 

  • Haddad, V., D. Garrone-Neto, J. B. D. P. Neto, F. P. D. L. Marques & K. C. Barbaro, 2004. Freshwater stingrays: study of epidemiologic, clinic and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. Toxicon 43: 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Herrell Jr, F. E., 2016. Harrell Miscellaneous: Package Hmisc. https://github.com/harrelfe/Hmisc.

  • Hyslop, E. J., 1980. Stomach contents analysis : a review of methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • Kawakami, E. & G. Vazzoler, 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Boletim do Instituto Oceanográfico 29: 205–207.

    Article  Google Scholar 

  • Kliemann, B. C. K., R. L. Delariva, J. P. A. Amorim, C. R. da Silva, R. V. Silveira & I. P. Ramos, 2018. Dietary changes and histophysiological responses of a wild fish (Geophagus cf. proximus) under the influence of tilapia cage farm. Fisheries Research 204: 337–347.

    Article  Google Scholar 

  • Kolmann, M. A., K. C. Welch, A. P. Summers & N. R. Lovejoy, 2016. Always chew your food: freshwater stingrays use mastication to process tough insect prey. Proceedings of the Royal Society B 283: 1–9.

    Article  CAS  Google Scholar 

  • Lameiras, J. L. V., O. T. F. Costa, M. C. Santos & W. L. P. Duncan, 2013. Arraias de água doce (Chondrichthyes–Potamotrygonidae): biologia, veneno e acidentes. Scientia Amazonia 2: 11–27.

    Google Scholar 

  • Loboda, T. S. & M. R. Carvalho, 2013. Systematic revision of the Potamotrygon motoro (Müller & Henle, 1841) species complex in the Paraná-Paraguay basin, with description of two new ocellated species (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyology 11: 693–737.

    Article  Google Scholar 

  • Loboda, T. S., J. P. C. B. Silva, J. P. Fontenelle & M. R. Carvalho, 2016. Catálogo de especies: Potamotrygon amandae. In Lasso, C. A., R. Rosa, M. A. Morales-Betancourt, D. Garrone-Neto & M. R. Carvalho (eds), Rayas de agua dulce (Potamotrygonidae) de Suramérica. Instituto Humboldt, Bogotá.

    Google Scholar 

  • Lonardoni, A. P., E. Goulart, E. F. Oliveira & M. C. F. Abelha, 2006. Hábitos alimentares e sobreposição trófica das raias Potamotrygon falkneri e Potamotrygon motoro (Chondrichthyes, Potamotrygonidae) na planície alagável do alto rio Paraná, Brasil. Acta Scientiarum 28: 195–202.

    Google Scholar 

  • Lovejoy, N. R., E. Bermingham & A. P. Martin, 1998. Marine incursion into South America. Nature 396: 421–422.

    Article  CAS  Google Scholar 

  • Lowry, O., N. J. Rosebrough, L. Farr & R. J. Randall, 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Marques, H., J. H. P. Dias & I. P. Ramos, 2018. Can fishways restore river connectivity? A case study using β diversity as a method of assessment. Acta Limnologica Brasiliensia 30: 307.

    Article  Google Scholar 

  • Milligan, C. L. & S. S. Girard, 1993. Lactate metabolism in rainbow trout. Journal of Experimental Biology 180: 175–193.

    CAS  Google Scholar 

  • Mommsen, T. P., 2001. Paradigms of growth in fish. Comparative biochemistry and physiology. Biochemistry & Molecular Biology Part B 129: 207–219.

    Article  CAS  Google Scholar 

  • Moreira, A., E. Figueira, I. L. Pecora, A. M. V. M. Soares & R. Freitas, 2017. Biochemical alterations in native and exotic oyster species in Brazil in response to increasing temperature. Comparative Biochemistry and Physiology Part C 191: 183–193.

    CAS  PubMed  Google Scholar 

  • Moro, G., P. Charvet & R. S. Rosa, 2011. Aspectos da alimentação da raia de água doce Potamotrygon orbignyi (Chondrichthyes: Potamotrygonidae) da bacia do rio Parnaíba, Nordeste do Brasil. Revista Nordestina de Biologia 20: 47–57.

    Google Scholar 

  • Mugnai, R., J. L. Nessimian & D. F. Baptista, 2010. Manual de identificação de macroinvertebrados aquáticos do Estados do Rio de Janeiro, 1st ed. Technical Books, Rio de Janeiro.

    Google Scholar 

  • Okland, H. M. W., I. S. Stoknes, J. F. Remme, M. Kjerstad & M. Synnes, 2005. Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs. Comparative Biochemistry and Physiology 140: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, H. Wagner, 2016. Vegan: community ecology package https://cran.r-project.org/web/packages/vegan/index.html.

  • Ota, R. R., G. C. Deprá, W. J. Graça & C. S. Pavanelli, 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology 16: 1–111.

    Article  Google Scholar 

  • Özyilmaz, A. & A. OÖzy, 2015. Determination of the biochemical properties of liver oil from selected cartilaginous fish living in the northeastern mediterranean. The Journal of Animal and Plant Sciences 25: 160–167.

    Google Scholar 

  • Parrish, C. C., 2011. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, New York: 4–20.

    Google Scholar 

  • Ribeiro, P. A. P., D. C. Melo, L. S. Costa & E. A. Teixeira, 2012. Menejo nutricional e alimentar de peixes de água doce.

  • Pelletier, D., H. Guderley & J. D. Dutil, 1993. Effects of growth rate, temperature, season, and body size on glycolytic enzyme activities in the white muscle of atlantic cod (Gadus morhua). Journal of Experimental Zoology 265: 477–487.

    Article  CAS  Google Scholar 

  • Pethybridge, H. R., C. C. Parrish, B. D. Bruce, J. W. Young & P. D. Nichols, 2014. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator. PLoS ONE 9: 1–10.

    Article  CAS  Google Scholar 

  • R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. https://www.r-project.org/.

  • Ramos, I. P., A. P. Vidotto-Magnon & E. D. Carvalho, 2008. Influence of cage fish farming on the diet of dominant fish species of a Brazilian reservoir (Tietê River, High Paraná River basin). Acta Limnologica Brasiliensia 20: 245–252.

    Google Scholar 

  • Ridley, M., 2007. Evolução, 3rd ed. Artmed, Porto Alegre.

    Google Scholar 

  • Ricciardi, A. & F. G. Whoriskey, 2004. Exotic species replacement: shifting dominance of dreissenid mussels in the Soulanges Canal, upper St. Lawrence River, Canada. Journal of the North American Benthological Society 23: 507–514.

    Article  Google Scholar 

  • Sampaio, A. B. & I. B. Schmidt, 2013. Espécies exóticas invasoras em unidades de conservação federais do Brasil. Biodiversidade Brasileira 2: 32–49.

    Google Scholar 

  • Sánchez-Vázquez, F. J., T. Yamamoto, T. Akiyama, J. A. Madrid & M. Tabata, 1999. Macronutrient self-selection through demand-feeders in rainbow trout. Physiology & Behavior 66: 45–51.

    Article  Google Scholar 

  • Sheridan, M. A., 1994. Regulation of lipid metabolism in poikilothermic vertebrates. Comparative Biochemistry and Physiology Part B 107: 495–508.

    Article  Google Scholar 

  • Shibuya, A. & M. L. G. Araújo, 2009. Analysis of stomach contents of freshwater stingrays (Elasmobranchii, Potamotrygonidae) from the middle Negro River, Amazonas, Brazil. Pan-American Journal of Aquatic Sciences 4: 466–475.

    Google Scholar 

  • Shockley, M. & A. T. Dossey, 2004. Insects for human consumption. In Morales-Ramos, J., G. Rojas & D. Shapiro-Llan (eds), Mass Production of Beneficial Organisms: Invertebrates and Entomophatogens. Springer, New York: 617–652.

    Google Scholar 

  • Siegel, S., 1975. Estatística não-paramétrica: para as ciências do comportamento. McGraw-Hill, São Paulo.

    Google Scholar 

  • Silva, T. B. & V. S. Uieda, 2007. Preliminary data on the feeding habits of the freshwater stingrays Potamotrygon falkneri and Potamotrygon motoro (Potamotrygonidae) from the Upper Paraná River basin, Brazil. Biota Neotropica 7: 221–226.

    Article  Google Scholar 

  • Silva, J. P. C. B. & M. R. Carvalho, 2011. A taxonomic and morphological redescription of Potamotrygon falkneri Castex & Maciel, 1963 (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyology 9: 209–232.

    Article  Google Scholar 

  • Silva, E. M., J. M. Monserrat, L. A. Sampaio & M. B. Tesser, 2015. Crescimento e metabolismo do nitrogênio em juvenis de Trachinotus marginatus alimentados com diferentes níveis proteicos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 67: 131–139.

    Article  Google Scholar 

  • Silva, J. P. C. B., J. P. Fontenelle, T. L. Loboda, S. Ricardo, R. S. Rosa & M. R. Carvalho, 2016. Catálogo de especies: Potamotrygon falkneri. In Lasso, C. A., R. Rosa, M. A. Morales-Betancourt, D. Garrone-Neto & M. R. Carvalho (eds), Rayas de agua dulce (Potamotrygonidae) de Suramérica. Instituto Humboldt, Bogotá.

    Google Scholar 

  • Silva, J. C., É. A. Gubiani, M. P. Neves & R. L. Delariva, 2017. Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology 51: 275–288.

    Article  Google Scholar 

  • Singer, T. D. & J. S. Ballantyne, 1989. Absence of extrahepatic lipid oxidation in a freshwater elasmobranch, the dwarf stingray Potamotrygon magdalenae: evidence from enzyme activities. The Journal of Experimental Zoology 251: 355–360.

    Article  CAS  Google Scholar 

  • Speers-Roesch, B. & J. R. Treberg, 2010. The unusual energy metabolism of elasmobranch fishes. Comparative Biochemistry and Physiology 155: 417–434.

    Article  PubMed  CAS  Google Scholar 

  • Thorson, T. B., R. M. Wotton & T. A. Georgi, 1978. Rectal gland of freshwater stingrays, Potamotrygon spp. (Chondrichthyes: Potamotrygonidae). Biological Bulletin 154: 508–516.

    Article  CAS  PubMed  Google Scholar 

  • Twibell, R. G., B. A. Watkins, L. Rogers & P. B. Brown, 2000. Effects of dietary conjugated linoleic acids on hepatic and muscle lipids in hybrid striped bass. Lipids 35: 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Van den Thillart, G. & M. Van Raaij, 1995. Endogenous fuels; non-invasive versus invasive approaches. In Hochachka, P. W. & T. P. Mommsen (eds), Biochemistry and Molecular Biology of Fishes, Metabolic Biochemistry. Elsevier Science, Amsterdam: 33–63.

    Google Scholar 

  • Vasconcelos, H. C. G. & J. C. S. Oliveira, 2011. Alimentação de Potamotrygon motoro (Chondrichthyes, Potamotrygonidae) na planície de inundação da APA do Rio Curiaú, Macapá-Amapá-Brasil. Biota Amazônia 1: 66–73.

    Article  Google Scholar 

  • Vidotto-Magnoni, A. P. & E. D. Carvalho, 2009. Aquatic insects as the main food resource of fish the community in a Neotropical reservoir. Neotropical Ichthyology 7: 701–708.

    Article  Google Scholar 

  • Wei, T. & V. Simko, 2016. Visualization of a Correlation Matrix: Package corrplot. https://github.com/taiyun/corrplot.

  • Whitney, K. D. & C. A. Gabler, 2008. Rapid evolution in introduced species, “invasive traits” and recipient communities: challenges for predicting invasive potential. Diversity and Distributions 14: 569–580.

    Article  Google Scholar 

  • Yang, S. D., T. S. Lin, C. H. Liou & H. K. Peng, 2003. Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquaculture Research 34: 661–666.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Engineering Faculty of Ilha Solteira (FEIS/UNESP), for the use of laboratory facilities and logistics. We would also like to thank MSc. Douglas Ribeiro Castro for his assistance in the collection and identification of fish and Prof. Dr. Francisco Langeani Neto for assistance with fish identification (Institute of Biosciences, Humanities and Exact Sciences - IBILCE/UNESP) and Dr. Hugo Marques for comments on the manuscript. This study was supported by the São Paulo Research Foundation (FAPESP), Process number 2015/21936-0 (for the scholarship of C.D.P.), Process number 2016/11736-6 (for the scholarship of L.S) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. I.P.R. is supported by the National Council for Scientific and Technological Development (CNPq) (process 303311/2018-5).

Funding

This work was granted by Process no 2015/21936-0 and no 2016/11736-6, São Paulo Research Foundation (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

All authors contributed to the study conception and design. Conceived and designed the experiments: CDP; CSR and IPR (Supervisor). Made the collections: CDP; JMAC; LS; CSR and LAA Performed the experiments: CDP; LS; IPR and CSR Analyzed the data: CDP; IPR; CSR and RLD Wrote the paper: CDP; IPR; CSR and RLD.

Corresponding author

Correspondence to Cibele Diogo Pagliarini.

Additional information

Handling editor: Michael Power.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliarini, C.D., da Silva Ribeiro, C., Spada, L. et al. Trophic ecology and metabolism of two species of nonnative freshwater stingray (Chondrichthyes: Potamotrygonidae). Hydrobiologia 847, 2895–2908 (2020). https://doi.org/10.1007/s10750-020-04283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04283-1

Keywords

Navigation