Skip to main content
Log in

Improving proactive routing with a multicriteria and adaptive framework in ad-hoc wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Ad hoc wireless networks have aroused much interest of the scientific community in the last two decades. The provision of Quality of Service (QoS) is a prominent challenge in this research field, since these networks are prone to suffer from instabilities related to wireless medium and mobility. Depending on application, the protocol needs to consider two or more QoS criteria when solving the routing problem. In this context, this work proposes a multicriteria and adaptive framework for proactive routing in order to generate promising compromise solutions by considering critical network quality indicators. Two new methods are proposed—one based on weighted sum method and another based on compromise method (\(\varepsilon\)-constraint)—and compared with the standard weighted sum method. Aiming to map a single final solution, a utility function is proposed to support the definition of the parameters (weights and constraints) of each method. The results show the framework, jointly with the proposed methods, were efficient in promoting significant improvements in the quality indicators investigated in static and mobile scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The greatest Packet Delivery Ratio.

References

  1. Alam, M., Ferreira, J., & Fonseca, J. (2016). Introduction to intelligent transportation systems. In Intelligent Transportation Systems (pp. 1–17). Cham: Springer.

    Chapter  Google Scholar 

  2. Yousefi, S., Fathy, M., & Bastani, S. (2016). Vehicular ad hoc networks: Current issues and future challenges. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 329–378.

    Google Scholar 

  3. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks,10(7), 1497–1516.

    Article  Google Scholar 

  4. Vieira, L. F. M. (2016). Underwater sensor networks. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 413–424.

    Google Scholar 

  5. Cheng, X., Huang, X., & Ding-Zhu, D. (2013). Ad hoc wireless networking (Vol. 14). Berlin: Springer.

    MATH  Google Scholar 

  6. Khoukhi, L., El Masri, A., & Gaiti, D. (2016). Quality-of-service state information-based solutions in wireless mobile ad hoc networks: A survey and a proposal. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 279–311.

    Google Scholar 

  7. Loo, J., Mauri, J. L., & Ortiz, J. H. (2016). Mobile ad hoc networks: Current status and future trends. Boca Raton: CRC Press.

    Book  Google Scholar 

  8. Jabbar, W., Ismail, M., & Nordin, R. (2014). On the performance of the current MANET routing protocols for VoIP, HTTP, and FTP applications. Journal of Computer Networks and Communications.

  9. Javaid, N.,, Ullah, M., Djouani, K. (2011). Identifying design requirements for wireless routing link metrics. In Global telecommunications conference (GLOBE- COM) (pp. 1–5). IEEE.

  10. Javaid, N., Bibi, A., Javaid, A., Khan, Z. A., Latif, K., & Ishfaq, M. (2014). Investigating quality routing link metrics in wireless multi-hop networks. Annals of Telecommunications,69(3–4), 209–217.

    Article  Google Scholar 

  11. Moussaoui, A., Semchedine, F., & Boukerram, A. (2014). A link-state QoS routing protocol based on link stability for mobile ad hoc networks. Journal of Network and Computer Applications,39, 117–125.

    Article  Google Scholar 

  12. Zhao, Z., Rosário, D., Braun, T., & Cerqueira, E. (2014). Context-aware opportunistic routing in mobile ad-hoc networks incorporating node mobility. In Wireless communications and networking conference (WCNC) (pp. 2138–2143).

  13. Jauregui, B. B., & Malaina, F. L. (2016). New approaches to mobile ad hoc network routing: Application of intelligent optimization techniques to multicriteria routing. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 171–200.

    Google Scholar 

  14. Chakchouk, N. (2015). A survey on opportunistic routing in wireless communication networks. IEEE Communications Surveys & Tutorials,17(4), 2214–2241.

    Article  Google Scholar 

  15. Shi, F., Jin, D., & Song, J. (2014). A survey of traffic-based routing metrics in family of expected transmission count for self-organizing networks. Computers & Electrical Engineering,40(6), 1801–1812.

    Article  Google Scholar 

  16. Zachos, C., Loo, J., & Khan, S. (2016). Wireless mesh network: Architecture and protocols. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 425–448.

    Google Scholar 

  17. Guo, Z., Malakooti, S., Sheikh, S., Al-Najjar, C., & Malakooti, B. (2011). Multi-objective OLSR for proactive routing in MANET with delay, energy, and link lifetime predictions. Applied Mathematical Modelling,35(3), 1413–1426.

    Article  MATH  Google Scholar 

  18. Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks,18(4), 580–588.

    Article  Google Scholar 

  19. Papageorgiou, C., Kokkinos, P., & Emmanouel, V. (2016). Energy-efficient unicast and multicast communication for wireless ad hoc networks using multiple criteria. Mobile Ad Hoc Networks: Current Status and Future Trends, 2, 201–230.

    Google Scholar 

  20. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: Multi-objective paradigm. Sensors,15(7), 17572–17620.

    Article  Google Scholar 

  21. Moussaoui, A., & Boukeream, A. (2015). A survey of routing protocols based on link-stability in mobile ad hoc networks. Journal of Network and Computer Applications,47, 1–10.

    Article  Google Scholar 

  22. Collette, Y., & Siarry, P. (2013). Multiobjective optimization: Principles and case studies. Berlin: Springer.

    MATH  Google Scholar 

  23. Rosário, D., Zhao, Z., Braun, T., Cerqueira, E., Santos, A., & Alyafawi, I. (2014). Opportunistic routing for multi-flow video dissemination over flying ad-hoc networks. In 15th international symposium on a World of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–6). IEEE.

  24. Yu, F., Li, Y., Fang, F., & Chen, Q. (2007). A new tora-based energy aware routing protocol in mobile ad hoc networks. In 2007 3rd IEEE/IFIP international conference in central Asia on Internet (pp. 1–4). IEEE.

  25. Alwan, N. (2014). Performance analysis of Dijkstra-based weighted sum minimization routing algorithm for wireless mesh networks. Modelling and Simulation in Engineering.

  26. Xu, Y., Liu, J., Shen, Y., Jiang, X., & Taleb, T. (2016). Security/QoS-aware route selection in multi-hop wireless ad hoc networks. In International conference on communications (ICC) (pp. 1–6). IEEE.

  27. Ye, R., Boukerche, A., Wang, H., Zhou, X., & Yan, B. (2017). E3TX: An energy-efficient expected transmission count routing decision strategy for wireless sensor networks. Wireless Networks, 24(7), 2483–2496.

    Article  Google Scholar 

  28. Tang, L., Feng, S., Hao, J., & Zhao, X. (2015). Energy-efficient routing algorithm based on multiple criteria decision making for wireless sensor networks. Wireless Personal Communications,80(1), 97–115.

    Article  Google Scholar 

  29. Tsado, Y., Gamage, K., Adebisi, B., Lund, D., Rabie, K. M., & Ikpehai, A. (2017). Improving the reliability of OLSR routing in smart grid NAN based wireless mesh network using multiple metrics. Energies,10(3), 2017.

    Article  Google Scholar 

  30. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). Meqsa-olsrv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IOT. IEEE Access,6, 76546–76572.

    Article  Google Scholar 

  31. Nehra, V., Sharma, A. K., & Tripathi, R. K. (2019). NMR inspired energy efficient protocol for heterogeneous wireless sensor network. Wireless Networks,25(6), 3689–3700.

    Article  Google Scholar 

  32. Kuipers, F., Van Mieghem, P., Korkmaz, T., & Krunz, M. (2002). An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine,40(12), 50–55.

    Article  Google Scholar 

  33. Garey, M. R., & Johnson, D. S. (2002). Computers and intractability: A guide to the theory of NP completeness (Vol. 29). London: W.H. Freeman & Co.

    MATH  Google Scholar 

  34. Liu, G., & Ramakrishnan, K. G. (2001). A* prune: An algorithm for finding K shortest paths subject to multiple constraints. In Proceedings of the 20th annual joint conference of the IEEE Computer and Communications Societies (INFOCOM) (Vol. 2, pp. 743–749). IEEE.

  35. De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed Systems,23(4), 713–726.

    Article  Google Scholar 

  36. Jabbar, W. A., Ismail, M., & Nordin, R. (2015). Multi-criteria based multipath OLSR for battery and queue-aware routing in multi-hop ad hoc wireless networks. Wireless Networks,21(4), 1309–1326.

    Article  Google Scholar 

  37. Rosário, D., Zhao, Z., Braun, T., Cerqueira, E., Santos, A., & Li, Z. (2013). Assessment of a robust opportunistic routing for video transmission in dynamic topologies. In Wireless Days (WD), IFIP (pp. 1–6). IEEE.

  38. Costagliola, N., López, P. G., Oliviero, F., & Romano, S. P. (2012). Energy and delay-efficient routing in mobile ad hoc networks. Mobile Networks and Applications,17(2), 281–297.

    Article  Google Scholar 

  39. Li, Y., Xia, S., Cao, B., Liu, Q., et al. (2019). Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks. IEEE Transactions on Cloud Computing, 1–14.

  40. Ahmadi, M., Shojafar, M., Khademzadeh, A., Badie, K., & Tavoli, R. (2015). A hybrid algorithm for preserving energy and delay routing in mobile ad-hoc networks. Wireless Personal Communications,85(4), 2485–2505.

    Article  Google Scholar 

  41. Li, Y., Wang, Z., You, X., Liu, Q.-l., & Zhang, W. (2012). NER-DRP: Dissemination based routing protocol with network-layer error control for intermittently connected mobile networks. Mobile Networks and Applications,17(5), 618–628.

    Article  Google Scholar 

  42. Li, Y., Zhang, Z., Wang, C., Zhao, W., & Chen, H.-H. (2013). Blind cooperative communications for multihop ad hoc wireless networks. IEEE Transactionson Vehicular Technology,62(7), 3110–3122.

    Article  Google Scholar 

  43. Sengupta, S., Das, S., Nasir, M. D., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence,26(1), 405–416.

    Article  Google Scholar 

  44. Passos, D., Teixeira, D. V., Muchaluat-Saade, D. C., Magalhães, L. C. S., & Albuquerque, C. (2006). Mesh network performance measurements. In International information and telecommunicatios technologies symposium (I2TS) (pp. 48–55).

  45. De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks,11(4), 419–434.

    Article  Google Scholar 

  46. OLSR implementation. (2017). Retrieved May 24, 2017 from http://www.olsr.org/.

  47. Clausen, T., & Jacquet, P. (2003). Optimized link state routing protocol (OLSR). Technical report, IETF.

  48. Baccour, N., Koubâa, A., Jamâa, M. B., Rosario, D. D., Youssef, H., Alves, M., et al. (2011). Radiale: A framework for designing and assessing link quality estimators in wireless sensor networks. Ad Hoc Networks,9(7), 1165–1185.

    Article  Google Scholar 

  49. Swagatam Das and Ponnuthurai Nagaratnam Suganthan. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation,15(1), 4–31.

    Article  Google Scholar 

  50. Robic, T., & Filipic, B. (2005). Differential evolution for multiobjective optimization. In Evolutionary multi-criterion optimization (pp. 520–533). Berlin: Springer.

  51. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,6(2), 182–197.

    Article  Google Scholar 

  52. Javaid, N., Akbar, M., Khan, Z. A., Alghamdi, T. A., Saqib, M. N., & Khan, M. I. (2014). Modeling enhancements in routing protocols under mobility and scalability constraints in VANETs. International Journal of Distributed Sensor Networks,10(7), 261823.

    Article  Google Scholar 

  53. Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for engineers. Hoboken: Wiley.

    MATH  Google Scholar 

  54. OMNeT ++ Core Team. (2017). OMNeT ++ discrete event simulator. Retrieved from: 2017-10-05.

Download references

Acknowledgements

This study was financed in part by the Brazilian agencies CNPq, FAPEMIG and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean N. R. Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, J.N.R., Batista, L.S. & Monteiro, C.C. Improving proactive routing with a multicriteria and adaptive framework in ad-hoc wireless networks. Wireless Netw 26, 4595–4614 (2020). https://doi.org/10.1007/s11276-020-02366-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02366-4

Keywords

Navigation