Skip to main content
Log in

Improving IEEE 802.15.4 performance with a switched Gold sequence chip formation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Low power, low data rate, low complexity wireless networks are among the most preferred ones in the data communication between wireless sensors, IoT devices, and control applications. IEEE 802.15.4 is a well-known standard for low rate wireless personal area networks which specifies only physical layer and media access control layer. However, IEEE 802.15.4 suffers from several limitations that play a role in deteriorating its performance such as using a standard PN sequence for every channel types. Noise level and interference are significant factors that should be taken into consideration for the achievement of successful communication in different channel characteristics. Utilization of a standard PN sequence would not give optimum performance results for every channel types. In this study, we design a IEEE 802.15.4 peer to peer network simulator to compare the performance of standard IEEE 802.15.4 PN chip sequences and generated Gold sequences in terms of data throughput. The results from Monte Carlo simulations show that Gold sequences give better throughputs compared to standard PN sequence of IEEE 802.15.4. However, both chip sequences could not achieve any data transfer for the noisier channels that show a chip error rate greater than 0.18. To overcome this problem, each symbol of the physical layer protocol data unit is matched with a Gold set with greater spreading factors. Obtained results show that, using variable length Gold sets according to operation environment increases the data throughput in IEEE 802.15.4 networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang, C., Jiang, T., & Zhang, Q. (2016). ZigBee network protocols and applications. Boca Raton: Auerbach Publications.

    Book  Google Scholar 

  2. Kim, H., Kim, S., Kwon, S., Jo, W., & Shon, T. (2018). A novel security framework for industrial IoT based on ISA 100.11 a. In International conference on heterogeneous networking for quality, reliability, security and robustness (pp. 61–72). Springer.

  3. Ghosh, T., Worku, K., Hupp, J., & Zheng, Y. (2018). Performance evaluation of multi-hop wirelesshart network on a real-life testbed. Transactions on Networks and Communications, 6(1), 01.

    Google Scholar 

  4. Saranya, S., & JesuJayarin, P. (2017). An efficient tracking device for alzheimer patient using miwi. International Research Journal of Engineering and Technology, 4(4), 3365–3371.

    Google Scholar 

  5. Nepal, S., Dahal, S., & Shin, S. (2016). Does the ieee 802.15. 4 mac protocol work well in wireless body area networks. Journal of Advances in Computer Networks, 4(1), 52–57.

    Article  Google Scholar 

  6. Hossain, M. (2018). Towards a holistic framework for secure, privacy-aware, and trustworthy internet of things using resource-efficient cryptographic schemes, Ph.D. thesis, The University of Alabama at Birmingham.

  7. IEEE 802.15.4-2003. (2003). IEEE standard for telecommunications and information exchange between systems-LAN/MAN specific requirements-part 15: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPAN). Technical report. New York, NY: IEEE.

  8. IEEE 802.15.4-2006. (2006). IEEE standard for information technology-local and metropolitan area networks-specific requirements-part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANS). Technical report. New York, NY: IEEE.

  9. IEEE 802.15.4-2011. (2013). IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (LR-WPANS). Technical report. New York, NY: IEEE.

  10. IEEE 802.15.4k-2013. (2013). IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (LR-WPANS)—Amendment 5: Physical layer specifications for low energy, critical infrastructure monitoring networks. Technical report. New York, NY: IEEE.

  11. IEEE 802.15.4g-2012. (2012). IEEE standard for local and metropolitan area networks–part 15.4: Low-rate personal area networks (LR-WPANs) amendment 3: Physical layer (PHY) specifications for low-data-rate, wireless, smart metering utility networks. Technical report. New York, NY: IEEE.

  12. Goyal, P., & Singh, B. (2017). Safety-critical wireless sensor networks under a polyphase spreading sequences scenario. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2522–2534.

    Article  Google Scholar 

  13. Kapoor, R., Gupta, R., Kumar, R., Jha, S., et al. (2019). New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in mimo systems. Wireless Networks, 25(8), 4541–4553.

    Article  Google Scholar 

  14. Mandal, A. K. (2019). All-optical toad-based manchester and gold code generators. Journal of Optics, 48(3), 442–451.

    Article  Google Scholar 

  15. Okdem, S. (2017). A monte carlo machine design to obtain CSMA/CA parameter values for unslotted ieee 802.15.4 based networks. Gazi University Science Journal: Part C Design and Technology, 5(2), 247–256.

    Google Scholar 

  16. Eaton, J., et al. (2013). GNU octave: A high-level interactive language for numerical computations (3rd ed.). Boston, MA: Free Software Foundation Inc.

    Google Scholar 

  17. Park, P., Ergen, S. C., Fischione, C., & Sangiovanni-Vincentelli, A. (2013). Duty-cycle optimization for ieee 802.15. 4 wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 10(1), 12.

    Article  Google Scholar 

  18. Di Marco, P., Park, P., Fischione, C., & Johansson, K. H. (2012). Analytical modeling of multi-hop ieee 802.15. 4 networks. IEEE Transactions on Vehicular Technology, 61(7), 3191–3208.

    Article  Google Scholar 

  19. Wang, H. S., & Chang, P.-C. (1996). On verifying the first-order markovian assumption for a rayleigh fading channel model. IEEE Transactions on Vehicular Technology, 45(2), 353–357.

    Article  Google Scholar 

  20. Fukawa, K., Suzuki, H., & Tateishi, Y. (2012). Packet-error-rate analysis using markov models of the signal-to-interference ratio for mobile packet systems. IEEE Transactions on Vehicular Technology, 61(6), 2517–2530.

    Article  Google Scholar 

  21. Wang, F., Li, D., & Zhao, Y. (2011). Analysis of CSMA/CA in IEEE 802.15. 4. IET Communications, 5(15), 2187–2195.

    Article  Google Scholar 

  22. Ci, S., & Sharif, H. (2002). An link adaptation scheme for improving throughput in the IEEE 802.11 wireless LAN. In 27th Annual IEEE conference on local computer networks, 2002 proceedings (LCN 2002, pp. 205–208). IEEE.

  23. Lin, Y.-D., Yeh, J.-H., Yang, T.-H., Ku, C.-Y., Tsao, S.-L., & Lai, Y.-C. (2009). Efficient dynamic frame aggregation in ieee 802.11 s mesh networks, International Journal of Communication Systems, 22(10), 1319–1338.

    Article  Google Scholar 

  24. Ci, S., & Sharif, H. (2000). Adaptive approaches to enhance throughput of IEEE 802.11 wireless LAN with bursty channel. In Proceedings 25th annual IEEE conference on local computer networks (LCN 2000, pp. 44–45). IEEE.

  25. Badia, L., Baldo, N., Levorato, M., & Zorzi, M. (2010). A markov framework for error control techniques based on selective retransmission in video transmission over wireless channels. IEEE Journal on Selected Areas in Communications, 28(3), 488–500.

    Article  Google Scholar 

  26. Zhu, J., Tao, Z., & Lv, C. (2012). Performance evaluation for a beacon enabled ieee 802.15. 4 scheme with heterogeneous unsaturated conditions. AEU-International Journal of Electronics and Communications, 66(2), 93–106.

    Article  Google Scholar 

  27. Shen, B., & Abedi, A. (2007). A simple error correction scheme for performance improvement of IEEE 802.15. 4, ICWN’07 387.

  28. Biroli, A. D. G., Martina, M., & Masera, G. (2012). An LDPC decoder architecture for wireless sensor network applications. Sensors, 12(2), 1529–1543.

    Article  Google Scholar 

  29. Javaid, N., Rehman, O., Alrajeh, N., Khan, Z. A., Manzoor, B., & Ahmed, S. (2013). Aid: An energy efficient decoding scheme for ldpc codes in wireless body area sensor networks. Procedia Computer Science, 21, 449–454.

    Article  Google Scholar 

  30. Nain, A. K., Bandaru, J., Zubair, M. A., & Pachamuthu, R. (2017). A secure phase-encrypted ieee 802.15. 4 transceiver design. IEEE Transactions on Computers, 66(8), 1421–1427.

    Article  MathSciNet  Google Scholar 

  31. Xiong, X., Wu, T., Long, H., & Zheng, K. (2014). Implementation and performance evaluation of LECIM for 5g m2m applications with SDR. In IEEE Globecom Workshops (GC Wkshps) (pp. 612–617). IEEE.

  32. Deshmukh, S., & Bhosle, U. (2018). Analysis of outage probability for MC-CDMA systems using different spread codes. Asian Journal of Electrical Sciences, 7(2), 107–114.

    Google Scholar 

  33. Arslan, S., & Okdem, S. (2015). Adaptive data sequence generator for noisy signals in low rate wireless personal area networks. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(3), 371–380.

    Google Scholar 

  34. Ahmed, N., Rahman, H., & Hussain, M. I. (2016). A comparison of 802.11 ah and 802.15. 4 for iot. ICT Express, 2(3), 100–102.

    Article  Google Scholar 

  35. Chang, T., Watteyne, T., Vilajosana, X., & Gomes, P. H. (2018). Constructive interference in 802.15. 4: A tutorial. IEEE Communications Surveys & Tutorials, 21(1), 217–237.

    Article  Google Scholar 

  36. Wojuola, O. B., & Mneney, S. H. (2015). Multiple-access interference of gold codes in a DS-CDMA system. SAIEE Africa Research Journal, 106(1), 4–10.

    Article  Google Scholar 

  37. Fúster-Sabater, A., & Cardell, S. D. (2020). Linear complexity of generalized sequences by comparison of pn-sequences. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114(2), 79.

    Article  MathSciNet  Google Scholar 

  38. Wysocki, B. J., & Wysocki, T. A. (2003). On a method to improve correlation properties of orthogonal polyphase spreading sequences. Journal of Telecommunications and Information Technology, 2, 99–105.

    Google Scholar 

  39. Chan, C.-K., Lam, W.-H. (1994). A simplified a periodic cross-correlation model for direct-sequence spread-spectrum multiple-access communication systems. In Proceedings of ICC/SUPERCOMM’94-1994 international conference on communications (pp. 1516–1520). IEEE.

  40. Okdem, S. (2017). A real-time noise resilient data link layer mechanism for unslotted ieee 802.15. 4 networks. International Journal of Communication Systems, 30(3), 29–55.

    Article  Google Scholar 

  41. Kapus, T. (2017). Using prism model checker as a validation tool for an analytical model of ieee 802.15. 4 networks. Simulation Modelling Practice and Theory, 77, 367–378.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Selcuk Okdem for his support, encouragement, and guidance. I also appreciate his help about simulation codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gezer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezer, A. Improving IEEE 802.15.4 performance with a switched Gold sequence chip formation. Wireless Netw 26, 4579–4593 (2020). https://doi.org/10.1007/s11276-020-02354-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02354-8

Keywords

Navigation