Skip to main content

Advertisement

Log in

New Approaches to Understand Mercury in Trees: Radial and Longitudinal Patterns of Mercury in Tree Rings and Genetic Control of Mercury in Maple Sap

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mercury (Hg) in the environment has been receiving considerable attention in recent years, but little is known about Hg accumulation in trees. We analyzed Hg in tree rings from four tree species at the Hubbard Brook Experimental Forest in New Hampshire to determine whether Hg concentrations are more influenced by soil Hg concentrations, which have been stable or increasing due to the cumulative retention of historical atmospheric Hg deposition, or by atmospheric Hg deposition, which has declined in recent decades. Declining concentrations from the top to the bottom of the bole (p < 0.001) and from older to newer tree rings (p = 0.001) suggest that foliar uptake of Hg is more important than root uptake. Ten sugar maple clones planted in six blocks at the Heiberg Forest in New York State showed significant genetic control of sap Hg concentration (p = 0.02), which was not related to soil Hg concentration differences across blocks. Clones could differ in stomatal uptake, root uptake, or translocation of Hg. Better understanding of the source of Hg in wood is needed to forecast future changes in Hg cycling in forested ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu, S. N., Soares, A. M. V. M., Nogueira, A. J. A., & Morgado, F. (2008). Tree rings, Populus nigra L., as mercury data logger in aquatic environments: case study of a historically contaminated environment. Bulletin of Environmental Contamination and Toxicology, 80(3), 294–299.

    Article  CAS  Google Scholar 

  • Arnold, J., Gustin, M. S., & Weisberg, P. J. (2018). Evidence for nonstomatal uptake of Hg by aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environmental Science & Technology, 52(3), 1174–1182.

    Article  CAS  Google Scholar 

  • Bailey, S. W., Buso, D. C., & Likens, G. E. (2003). Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology, 84(2), 471–484.

    Article  Google Scholar 

  • Bishop, K. H., Lee, Y. H., Munthe, J., & Dambrine, E. (1998). Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40(2–3), 101–113.

    Article  Google Scholar 

  • Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., & Holsen, T. M. (2014). Changing climate alters inputs and pathways of mercury deposition to forested ecosystems. Biogeochemistry, 119(1–3), 215–228.

    Article  CAS  Google Scholar 

  • Brombach, C. C., Manorut, P., Kolambage-Dona, P. P. P., Ezzeldin, M. F., Chen, B., Corns, W. T., et al. (2017). Methylmercury varies more than one order of magnitude in commercial European rice. Food Chemistry, 214, 360365. https://doi.org/10.1016/j.foodchem.2016.07.064.

    Article  CAS  Google Scholar 

  • Chalmers, A. T., Argue, D. M., Gay, D. A., Brigham, M. E., Schmitt, C. J., & Lorenz, D. L. (2011). Mercury trends in fish from rivers and lakes in the United States, 1969–2005. Environmental Monitoring Assessment, 175(1–4), 175–191.

    Article  CAS  Google Scholar 

  • Choi, Y. Y. (2011). International/national standards for heavy metals in food. Government Laboratory (Australia), 1-13.

  • Dennis, K. K, Uppal, K., Liu, K. H., Ma, C., Liang, B., Go, Y. M., & Jones, D.P. (2019) Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals, Database, volume 2019, baz083, https://doi.org/10.1093/database/baz083.

  • Dickinson, N. M., Punshon, T., Hodkinson, R. B., & Lepp, N. W. (1994). Metal tolerance and accumulation in willows. Willow Vegetation Filters for Municipal Wastewater and Sludges, Swedish University of Agricultural Sciences, Uppsala, 121–127.

  • Drevnick, P. E., Engstrom, D. R., Driscoll, C. T., Balogh, S. J., Kamman, N. C., Long, D. T., Muir, D. G. C., Parsons, M. J., Rolfhus, K. R., Rossmann, R., & Swain, E. B. (2012). Spatial and temporal patterns of mercury accumulation in lacustrine sediments across the Laurentian Great Lakes region. Environmental Pollution, 161, 252–260. https://doi.org/10.1016/j.envpol.2011.05.025.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57(1), 17–28.

    Article  Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v.

    Article  CAS  Google Scholar 

  • Du, S. H., & Fang, S. C. (1982). Uptake of elemental mercury vapor by C3 and C4 species. Environmental and Experimental Botany, 22(4), 437–443.

    Article  CAS  Google Scholar 

  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37(12), 1613–1622.

    Article  CAS  Google Scholar 

  • Engel, B. J., Schaberg, P. G., Hawley, G. J., Rayback, S. A., Pontius, J., Kosiba, A. M., & Miller, E. K. (2016). Assessing relationships between red spruce radial growth and pollution critical load exceedance values. Forest Ecology and Management, 359, 83–91.

    Article  Google Scholar 

  • Engstrom, D. R., & Swain, E. B. (1997). Recent declines in atmospheric mercury deposition in the upper Midwest. Environmental Science & Technology, 31(4), 960–967.

    Article  CAS  Google Scholar 

  • Frescholtz, T. F., Gustin, M. S., Schorran, D. E., & Fernandez, G. C. (2003). Assessing the source of mercury in foliar tissue of quaking aspen. Environmental Toxicology and Chemistry: An International Journal, 22(9), 2114–2119.

    Article  CAS  Google Scholar 

  • Gabriel, W. J. (1982). Mini-tapping sugar maples for sap-sugar testing. Research Note NE-305. Broomall, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. NE-305. https://www.nrs.fs.fed.us/pubs/rn/rn_ne305.pdf

  • Greger, M., Wang, Y., & Neuschütz, C. (2005). Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution, 134(2), 201–208.

    Article  CAS  Google Scholar 

  • Grégoire, D. S., & Poulain, A. J. (2018). Shining light on recent advances in microbial mercury cycling. FACETS, 3(1), 858–879.

    Article  Google Scholar 

  • Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 10(1), 1–39.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands. Journal of Environmental Quality, 32(2), 393–405.

    CAS  Google Scholar 

  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. A., & Kim, K. H. (1995). Foliar exchange of mercury vapor: evidence for a compensation point. Water, Air, and Soil Pollution, 80(1–4), 373–382.

    Article  CAS  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, C. F., & Fahey, T. J. (2014). Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics. Canadian Journal of Forest Research, 45(1), 52–59.

    Article  CAS  Google Scholar 

  • Hojdová, M., Navrátil, T., Rohovec, J., Žák, K., Vaněk, A., Chrastný, V., et al. (2011). Changes in mercury deposition in a mining and smelting region as recorded in tree rings. Water, Air, & Soil Pollution, 216(1–4), 73–82.

    Article  CAS  Google Scholar 

  • Jung, R., & Ahn, Y. S. (2017). Distribution of mercury concentrations in tree rings and surface soils adjacent to a phosphate fertilizer plant in southern Korea. Bulletin of Environmental Contamination and Toxicology, 99(2), 253–257.

    Article  CAS  Google Scholar 

  • Kamman, N. C., & Engstrom, D. R. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb dated sediment cores. Atmospheric Environment, 36(10), 1599–1609.

    Article  CAS  Google Scholar 

  • Keinänen, S. I., Hassinen, V. H., Kärenlampi, S. O., & Tervahauta, A. I. (2007). Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone. Tree Physiology, 27(9), 1243–1252.

    Article  Google Scholar 

  • Kim, E. (1988). Radial growth patterns of tree species in relation to environmental factors. Ph. D. Dissertation. Graduate School, Yale University.

  • Kronberg, R. M., Jiskra, M., Wiederhold, J. G., Björn, E., & Skyllberg, U. (2016). Methyl mercury formation in hillslope soils of boreal forests: the role of forest harvest and anaerobic microbes. Environmental Science & Technology, 50(17), 9177–9186.

    Article  CAS  Google Scholar 

  • Laacouri, A., Nater, E. A., & Kolka, R. K. (2013). Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA. Environmental Science & Technology, 47(18), 10462–10470.

    Article  CAS  Google Scholar 

  • Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131(3), 485–494.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Meyers, T. P., Taylor Jr., G. E., Turner, R. R., & Schroeder, W. H. (1992). Atmosphere-surface exchange of mercury in a forest: Results of modeling and gradient approaches. Journal of Geophysical Research: Atmospheres, 97(D2), 2519–2528.

    Article  CAS  Google Scholar 

  • Lindberg, S. E. (1996). Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes. In Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances (pp. 359–380). Springer, Dordrecht.

  • Luo, Y., Duan, L., Driscoll, C. T., Xu, G., Shao, M., Taylor, M., Wang, S., & Hao, J. (2016). Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in south China. Journal of Geophysical Research: Biogeosciences, 121(7), 2006–2016. https://doi.org/10.1002/2016JG003388.

    Article  CAS  Google Scholar 

  • Manceau, A., Wang, J., Rovezzi, M., Glatzel, P., & Feng, X. (2018). Biogenesis of mercury–sulfur nanoparticles in plant leaves from atmospheric gaseous mercury. Environmental Science & Technology, 52(7), 3935–3948.

    Article  CAS  Google Scholar 

  • Meng, B., Feng, X., Qiu, G., Anderson, C. W., Wang, J., & Zhao, L. (2014). Localization and speciation of mercury in brown rice with implications for pan-Asian public health. Environmental Science & Technology, 48(14), 7974–7981. https://doi.org/10.1021/es502000d.

    Article  CAS  Google Scholar 

  • Naharro, R., Esbrí, J. M., Amorós, J. Á., García-Navarro, F. J., & Higueras, P. (2019). Assessment of mercury uptake routes at the soil-plant-atmosphere interface. Geochemistry: Exploration, Environment, Analysis, 19(2), 146–154.

    CAS  Google Scholar 

  • Navrátil, T., Nováková, T., Shanley, J. B., Rohovec, J., Matoušková, S., Vaňková, M., & Norton, S. A. (2018). Larch tree rings as a tool for reconstructing 20th century Central European atmospheric mercury trends. Environmental Science & Technology, 52(19), 11060–11068.

    Article  CAS  Google Scholar 

  • Navrátil, T., Šimeček, M., Shanley, J. B., Rohovec, J., Hojdová, M., & Houška, J. (2017). The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Science of the Total Environment, 586, 1182–1192.

    Article  CAS  Google Scholar 

  • Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, et al. (2011). Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environmental Science & Technology, 45(9), 3974–3981.

    Article  CAS  Google Scholar 

  • Obrist, D., Johnson, D. W., & Edmonds, R. L. (2012). Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. Journal of Plant Nutrition and Soil Science, 175(1), 68–77.

    Article  CAS  Google Scholar 

  • O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., et al. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environment International, 126, 747–761.

    Article  CAS  Google Scholar 

  • Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., & Zhang, L. (2012). Litterfall mercury dry deposition in the eastern USA. Environmental Pollution, 161, 284–290.

    Article  CAS  Google Scholar 

  • Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., & Krabbenhoft, D. P. (2017). Atmospheric mercury deposition to forests in the eastern USA. Environmental Pollution, 228, 8–18.

    Article  CAS  Google Scholar 

  • Scanlon, T. M., Riscassi, A. L., Demers, J.D., Camper, T. D., Lee, T. R., and Druckenbrod, D. L. (2020). Mercury accumulation in tree rings: observed trends in quantity and isotopic composition in Shenandoah National Park, Virginia. Journal of Geophysical Research: Biogeosciences 125, e2019JG005445.

  • Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11(10), 4779–4787.

    Article  CAS  Google Scholar 

  • Smith, K. T., & Shortle, W. C. (1996). Tree biology and dendrochemistry. In J. S. Dean, D. M. Meko, & T. W. Swetnam (Eds.), Tree rings, environment, and humanity, Radiocarbon [press] (pp. 629–635). Arizona: Tucson.

  • Stamenkovic, J., & Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science & Technology, 43(5), 1367–1372.

    Article  CAS  Google Scholar 

  • Swetnam, T. W., Thompson, M. A., & Sutherland, E. K. (1985). Using dendrochronology to measure radial growth of defoliated trees. US Department of Agriculture, Agriculture Handbook 639. 39 p.

  • Temme, C., Blanchard, P., Steffen, A., Banic, C., Beauchamp, S., Poissant, L., Tordon, R., & Wiens, B. (2007). Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian atmospheric mercury measurement network (CAMNet). Atmospheric Environment, 41(26), 5423–5441.

    Article  CAS  Google Scholar 

  • Tyree, M. T. (1983). Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms. Plant Physiology, 73(2), 277–285.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (1984). Definition and procedure for the determination of the method detection limit—Revision 1.11, 40 CFR Part 136, Appendix B.

  • Wang, Y., & Greger, M. (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33(5), 1779–1785.

    Article  CAS  Google Scholar 

  • Wang, J. J., Guo, Y. Y., Guo, D. L., Yin, S. L., Kong, D. L., Liu, Y. S., & Zeng, H. (2011). Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal. Environmental Science & Technology, 46(2), 769–777.

    Article  CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Wang, H., Zheng, L., & Hu, T. (2012). Implications of mercury speciation in thiosulfate treated plants. Environmental Science & Technology, 46(10), 5361–5368.

    Article  CAS  Google Scholar 

  • Wang, X., Bao, Z., Lin, C. J., Yuan, W., & Feng, X. (2016). Assessment of global mercury deposition through litterfall. Environmental Science & Technology, 50(16), 8548–8557.

    Article  CAS  Google Scholar 

  • Wild, A. D., & Yanai, R. D. (2015). Soil nutrients affect sweetness of sugar maple sap. Forest Ecology and Management, 341, 30–36.

    Article  Google Scholar 

  • Wright, G., Woodward, C., Peri, L., Weisberg, P. J., & Gustin, M. S. (2014). Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry, 120(1–3), 149–162.

    Article  CAS  Google Scholar 

  • Yanai, R. D., McFarlane, K. J., Lucash, M. S., Kulpa, S. E., & Wood, D. M. (2009). Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado. Forest Ecology and Management, 258(10), 2233–2241.

    Article  Google Scholar 

  • Yang, Y., Yanai, R. D., Montesdeoca, M., & Driscoll, C. T. (2017). Measuring mercury in wood: challenging but important. International Journal of Environmental Analytical Chemistry, 97(5), 456–467.

    Article  CAS  Google Scholar 

  • Yang, Y., Yanai, R. D., Driscoll, C. T., Montesdeoca, M., & Smith, K. T. (2018). Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLoS One, 13(4), e0196293.

    Article  CAS  Google Scholar 

  • Yang, Y., Meng, L., Yanai, R. D., Driscoll, C. T., Montesdeoca, M., Templer, P., et al. (2019). Climate change may alter mercury fluxes in northern hardwood forests. Biogeochemistry. https://doi.org/10.1007/s10533-019-00605-1.

  • Yu, X., Driscoll, C. T., Warby, R. A., Montesdeoca, M., & Johnson, C. E. (2014). Soil mercury and its response to atmospheric mercury deposition across the northeastern United States. Ecological Applications, 24(4), 812–822.

    Article  Google Scholar 

  • Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1–4), 23–34.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhou, C., Lynam, M. M., Dvonch, J. T., Barres, J. A., Hopke, P. K., Cohen, M., & Holsen, T. M. (2017). Atmospheric mercury temporal trends in the northeastern United States from 1992 to 2014: are measured concentrations responding to decreasing regional emissions? Environmental Science & Technology Letters, 4(3), 91–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Don Pafka rooted and planted the clonal sugar maple trees at the Heiberg Forest in the 1970s, and Ian Halm cut trees for us at the Hubbard Brook. Mario Montesdeoca and Mariah Taylor at the Syracuse University were key to the analysis of Hg. We thank Jim Cidziel and an anonymous reviewer for their helpful feedback on the manuscript.

Funding

Funding for this study was provided by a seed grant from SUNY-ESF in 2014 and by the US Forest Service through the Northeastern States Research Cooperative in 2015. This paper is a contribution to the Hubbard Brook Ecosystem Study. The Hubbard Brook Experimental Forest is operated by the US Forest Service and the Hubbard Brook Research Foundation, and it forms part of the NSF Long-Term Ecological Research (LTER) site network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth D. Yanai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanai, R.D., Yang, Y., Wild, A.D. et al. New Approaches to Understand Mercury in Trees: Radial and Longitudinal Patterns of Mercury in Tree Rings and Genetic Control of Mercury in Maple Sap. Water Air Soil Pollut 231, 248 (2020). https://doi.org/10.1007/s11270-020-04601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04601-2

Keywords

Navigation