Skip to main content

Advertisement

Log in

The impact of secondary inorganic aerosol emissions change on surface air temperature in the Northern Hemisphere

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Using the Community Earth System Model (CESM) version 1.2, this study investigates the changes in secondary inorganic aerosols (SIOAs) over the Northern Hemisphere from 1850 to 2007, regional contributions, and consequences on surface air temperature. Results show that SIOAs changes can be divided into two stages. At the first stage (1850–1980), European and North American SIOAs concentrations increase, with a cooling effect especially over Europe and Eastern Siberia. At the second stage (1980–2007), SIOAs concentrations over Europe and North America are reduced with a warming effect in the mid-high latitudes, whereas SIOAs increase over East Asia and South Asia leading to a cooling effect there. The temperature changes over the emission source regions are mainly driven by radiative forcing. Horizontal transfer of heat leads to a temperature response in the Siberian region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas W, Mortier A, Bowersox V, Cherian R, Faluvegi G, Fagerli H, Hand J, Klimont Z, Galy-Lacaux C, Lehmann CMB et al (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:953. https://doi.org/10.1038/s41598-018-37304-0

    Article  Google Scholar 

  • Acosta Navarro JC, Varma V, Riipinen I, Seland Ø, Kirkevåg A, Struthers H, Iversen T, Hansson HC, Ekman AML (2016) Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience 9:277–281. https://doi.org/10.1038/ngeo2673

    Article  Google Scholar 

  • Bäumer D, Vogel B, Versick S, Rinke R, Möhler O, Schnaiter M (2008) Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany. Atmospheric Environment 42:989–998. https://doi.org/10.1016/j.atmosenv.2007.10.017

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2013) Earlier onset of the Indian monsoon in the late twentieth century: the role of anthropogenic aerosols. Geophys. Res. Lett. 40:3715–3720. https://doi.org/10.1002/grl.50719

    Article  Google Scholar 

  • Boucher O, D. Randall (2013) Clouds and aerosols. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change chapter7

  • Cheng L, Trenberth KE, Fasullo J, Boyer T, Abraham J, Zhu J (2017) Improved estimates of ocean heat content from 1960 to 2015. Science Advances 3:e1601545. https://doi.org/10.1126/sciadv.1601545

    Article  Google Scholar 

  • Conley AJ, Westervelt, D. M., Lamarque, J. F., Fiore, A. M., Shindell, D., Correa, G., Faluvegi, G., Horowitz, L. W. (2018) Multimodel surface temperature responses to removal of U.S. sulfur sioxide emissions. Journal of Geophysical Research: Atmospheres 123:2773-2796 https://doi.org/10.1002/2017jd027411

  • Emmons LK, Walters S, Hess PG, Lamarque JF, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D et al (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development 3:43–67. https://doi.org/10.5194/gmd-3-43-2010

    Article  Google Scholar 

  • Gantt B, He J, Zhang X, Zhang Y, Nenes A (2014) Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects. Atmospheric Chemistry and Physics 14:7485–7497. https://doi.org/10.5194/acp-14-7485-2014

    Article  Google Scholar 

  • Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ et al (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the American Meteorological Society 80:29–56. https://doi.org/10.1175/1520-0477(1999)080<0029:aootro>2.0.co;2

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Genio D, Anthony K, Dorothy L, Andrew L, Ken MS, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435. https://doi.org/10.1126/science.1110252

    Article  Google Scholar 

  • He J, Zhang Y, Glotfelty T, He R, Bennartz R, Rausch J, Sartelet K (2015) Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions. Journal of Advances in Modeling Earth Systems 7:110–141. https://doi.org/10.1002/2014ms000360

    Article  Google Scholar 

  • Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM, Bond TC, Dawidowski L, Kholod N, Kurokawa J-i, Li M, Liu L, Lu Z, Moura MCP, O&amp;apos;Rourke PR, Zhang Q (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development 11:369–408. https://doi.org/10.5194/gmd-11-369-2018

    Article  Google Scholar 

  • Kasoar M, Voulgarakis A, Lamarque JF, Shindell DT, Bellouin N, Collins WJ, Faluvegi G, Tsigaridis K (2016) Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models. Atmospheric Chemistry and Physics 16:9785–9804. https://doi.org/10.5194/acp-16-9785-2016

    Article  Google Scholar 

  • Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters 8. https://doi.org/10.1088/1748-9326/8/1/014003

  • Knutti, R., D. Masson, and A. Gettelman (2013), Climate model genealogy: generation CMIP5 and how we got there, grl, 40, 1194–1199, https://doi.org/10.1002/grl.50256.

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics 10:7017–7039. https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Lamarque JF, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F, Heald CL, Holland EA, Lauritzen PH, Neu J, Orlando JJ, Rasch P, Tyndall G (2011) CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM. Geoscientific Model Development Discussions 4:2199–2278. https://doi.org/10.5194/gmdd-4-2199-2011

    Article  Google Scholar 

  • Lamarque JF, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F et al (2012) CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development 5:369–411. https://doi.org/10.5194/gmd-5-369-2012

    Article  Google Scholar 

  • Lau WK-M, Kim K-M (2017) Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall, Asia-Pacific. Journal of the Atmospheric Sciences 53(2):181–194. https://doi.org/10.1007/s13143-017-0033-4

    Article  Google Scholar 

  • Li X, Ting M, Li C, Henderson N (2015) Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. Journal of Climate 28(10):4107–4125. https://doi.org/10.1175/JCLI-D-14-00559.1

    Article  Google Scholar 

  • Li X, Ting M, Lee DE (2018) Fast adjustments of the Asian summer monsoon to anthropogenic aerosols. Geophysical Research Letters 45:1001–1010. https://doi.org/10.1002/2017GL076667

    Article  Google Scholar 

  • Lin J, Tong D, Davis S, Ni R, Tan X, Pan D, Zhao H, Lu Z, Streets D, Feng T, Zhang Q, Yan Y, Hu Y, Li J, Liu Z, Jiang X, Geng G, He K, Huang Y, Guan D (2016) Global climate forcing of aerosols embodied in international trade. Nature Geoscience 9:790–794. https://doi.org/10.1038/ngeo2798

    Article  Google Scholar 

  • Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, Lamarque JF, Gettelman A, Morrison H, Vitt F, Conley A et al (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development 5:709–739. https://doi.org/10.5194/gmd-5-709-2012

    Article  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmospheric Chemistry and Physics 10:6311–6331. https://doi.org/10.5194/acp-10-6311-2010

    Article  Google Scholar 

  • Ming Y, Ramaswamy V, Chen G (2011) A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate 24:6077–6091. https://doi.org/10.1175/2011JCLI4111.1

    Article  Google Scholar 

  • Myhre G, Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., et al. (2013) Anthropogenic and natural radiative forcing. In T F Stocker, et al (Eds),Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change:650-740

  • Neale RB, Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., et al. (2012) Description of the Community Atmosphere Model (CAM5) NCAR Tech Note NCAR/TN-486 + STR

  • Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory ofanthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics Discussions 7:6843–6902. https://doi.org/10.5194/acpd-7-6843-2007

    Article  Google Scholar 

  • Oleson K, Dai, Y., Bonan, G. B., Bosilovichm, M., Dickinson, R., Dirmeyer, P., … Zeng, X. (2004) Technical Description of the Community Land Model (CLM) University Corporation for Atmospheric Research (No. NCAR/TN-461 + STR) https://doi.org/10.5065/D6N877R0

  • Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment 43:37–50. https://doi.org/10.1016/j.atmosenv.2008.09.063

    Article  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics 11:1101–1116. https://doi.org/10.5194/acp-11-1101-2011

    Article  Google Scholar 

  • Tilmes S, Lamarque JF, Emmons LK, Kinnison DE, Ma PL, Liu X, Ghan S, Bardeen C et al (2015) Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geoscientific Model Development 8:1395–1426. https://doi.org/10.5194/gmd-8-1395-2015

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Balmaseda MA (2014) Earth’s energy imbalance. J Climate 27:3129–3144. https://doi.org/10.1175/jcli-d-13-00294.1

    Article  Google Scholar 

  • Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathière J, Metzger S, Hauglustaine DA, Kanakidou M (2006) Change in global aerosol composition since preindustrial times. Atmospheric Chemistry and Physics Discussions 6:5585–5628. https://doi.org/10.5194/acpd-6-5585-2006

    Article  Google Scholar 

  • Undorf S, Bollasina M, Booth B, Hegerl (2018) Contrasting the effects of the 1850–1975 increase in sulphate aerosol in USA and WEU on Atlantic in CESM. Geophysical Research Letters 45:11,930–911,940. https://doi.org/10.1029/2018GL079970

    Article  Google Scholar 

  • Volkamer R, Jimenez JL, Martini S, Federico D, Katja Z, Qi S, Dara M, Luisa T, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophysical Research Letters 33. https://doi.org/10.1029/2006gl026899

  • Wang Y, Jiang JH, Su H (2015) Atmospheric resp onses to the redistribution of anthropogenic aerosols. J. Geophys. Res. Atmos. 120:9625–9641. https://doi.org/10.1002/2015JD023665

    Article  Google Scholar 

  • Wilcox LJ, Dunstone N, Lewinschal A, Bollasina M, Ekman AML, Highwood EJ (2019) Mechanisms for a remote response to Asian anthropogenic aerosol in boreal winter. Atmos. Chem. Phys. 19:9081–9095. https://doi.org/10.5194/acp-19-9081-2019

    Article  Google Scholar 

  • Xie S-P, Lu B, Xiang B (2013) Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience 6(10):828–832. https://doi.org/10.1038/ngeo1931

    Article  Google Scholar 

  • Xie X, Liu X, Wang H, Wang Z (2016) Effects of aerosols on radiative forcing and climate over East Asia with different SO2 emissions. Atmosphere-Basel 7. https://doi.org/10.3390/atmos7080099

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41831175, 91937302 and 41721004). Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese academy of science(COMS2019QXX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Liu, P., Huang, G. et al. The impact of secondary inorganic aerosol emissions change on surface air temperature in the Northern Hemisphere. Theor Appl Climatol 141, 857–868 (2020). https://doi.org/10.1007/s00704-020-03249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03249-6

Navigation