Skip to main content
Log in

Transcriptome Profiling Through Next-Generation Sequencing in Sugarcane Under Moisture-Deficit Stress Condition

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane is an important industrial crop used for the production of sugar and biofuel. Moisture deficit is an important factor, leading to low productivity in sugarcane. Understanding the molecular changes under moisture-deficit stress helps in deciding the candidate genes to target while developing improved stress-tolerant sugarcane varieties. The changes in transcriptome profile were studied by sequencing total RNA isolated from roots of drought-resistant sugarcane variety, Co 94008, under moisture-deficit stress and unstressed conditions. The up-regulation of expression of genes dominated over down-regulation under moisture-deficit stress in sugarcane. More than 45,000 open reading frames (ORFs) were predicted in the transcripts observed under unstressed and stressed conditions. Highest numbers of ORFs were found to be involved in various metabolic processes, followed by cellular processes. Gene ontology analysis identified 27 genes which are related to the responses of water deprivation and stress. Of the identified ORFs, 1143 showed significant differential expression, of which 487 were up-regulated and 656 were down-regulated. Nine of the up-regulated genes showed more than 100-fold increased expression under stressed conditions than the unstressed conditions. Thirty-six differentially expressed genes were found to have microsatellites regions which can be used as potential sites for diversity analysis. Expression profile of transcription factors (TFs) was also altered in sugarcane under moisture-deficit stress. Of the TFs which showed differential expression, five TFs were quantified in real-time PCR and exhibited similar pattern of expression in both sequencing and real-time PCR. The present study provides insights into the changes in sugarcane transcriptome due to moisture-deficit stress which lead to a more comprehensive understanding of responses to moisture-deficit stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

ORFs:

Open reading frames

RDA:

Representational difference analysis

SAGE:

Serial analysis of gene expression

SSH:

Suppression subtractive hybridization

TFs:

Transcription factors

References

  • Aharoni, A., and O. Vorst. 2002. DNA microarrays for functional plant genomics. Plant Molecular Biology 48(1–2): 99–118.

    CAS  PubMed  Google Scholar 

  • Amitai-Zeigerson, H., P.A. Scolnik, and D. Bar-Zvi. 1995. Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sciences 110: 205–213.

    CAS  Google Scholar 

  • Bachem, C.W.B., R.J.F.F. Oomen, and R.G.F. Visser. 1998. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Molecular Biology Reporter 16(2): 157–173.

    CAS  Google Scholar 

  • Bartels, D., D. Bartels, K. Engelhardt, R. Roncarati, K. Schneider, M. Rotter, and F. Salamini. 1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase-related protein. European Molecular Biology Organization Journal 10: 1037–1043.

    CAS  Google Scholar 

  • Black, C.A. 1965. Methods of soil analysis: Part I physical and mineralogical properties. Madison, Wisconsin, USA: American Society of Agronomy.

    Google Scholar 

  • Bohren, K.M., B. Bullock, B. Wermuth, and K.H. Gabbay. 1989. Thealdo-keto reductase super family. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductase. Journal of Biological Chemistry 264: 9547–9551.

    CAS  PubMed  Google Scholar 

  • Bray, E.A. 2002. Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant, Cell and Environment 25: 153–161.

    CAS  PubMed  Google Scholar 

  • Cardoso-Silva, C.B., E.A. Costa, M.C. Mancini, T.W.A. Balsalobre, L.E.C. Canesin, L.R. Pinto, M.S. Carneiro, A.A.F. Garcia, A.P. de Souza, and R. Vicentini. 2014. Denovo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS ONE 9(2): e88462. https://doi.org/10.1371/journal.pone.0088462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva, M.A., J.A.G. Silva, J. Enciso, V. Sharma, and J. Jifon. 2008. Yield components as indicators of drought tolerance of sugarcane. Scientia Agricola 65: 620–627.

    Google Scholar 

  • Davis, J.M. 1997. Vacuolar energization, pump, shunts and stress. Journal of Experimental Botany 48: 633–641.

    Google Scholar 

  • Degenkolbe, T., P.T. Do, J. Kopka, E. Zuther, D.K. Hincha, and K.I. Kohl. 2013. Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS ONE 8(5): e63637. https://doi.org/10.1371/journal.pone.0063637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denis, C.L., and J. Chen. 2003. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Progress in Nucleic Acid Research and Molecular Biology 73: 221–250.

    CAS  PubMed  Google Scholar 

  • Diatchenko, L.C., A.P. Yun-Fai, F. Campbellt, B. Chenchik, S. Moqadam, K. Huang, N. Lukyanovt, E.D. Gurskayat, Sverdlovt, and P.D. Siebert. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America 93(12): 6025–6030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz, K.J., N. Tavakoli, C. Kluge, T. Mimura, S.S. Sharama, G.C. Harris, A.N. Chardonnens, and D. Golldack. 2001. Significance of the V-type ATPase for the adaptation of stressful growth condition and its regulation on molecular and biochemical level. Journal of Experimental Botany 52(363): 1969–1980.

    CAS  PubMed  Google Scholar 

  • Duan, K., K. Yi, L. Dang, H. Huang, W. Wu, and P. Wu. 2008. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant Journal 54: 965–975.

    CAS  PubMed  Google Scholar 

  • Dugas, D.V., M.K. Monaco, A. Olson, R.R. Klein, W.S.D. Kumari, and E.K. Patricia. 2011. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 12: 514–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eason, J.R., E.M. O’Donoghue, and G.A. King. 1996. Asparagine synthesis and localization of transcripts for asparagine synthetase in tips of harvested Asparagus spears. Journal Plant Physiology 149: 251–256.

    CAS  Google Scholar 

  • Emrich, S.J., W.B. Barbazuk, L. Li, and P.S. Schnable. 2007. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Research 17: 69–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT Food and Agriculture Organization of the Unite Nations. In: FAO statistical databases 2014.http://faostat.fao.org/.

  • Feng, C., M. Chen, and C.J. Xu. 2012. Transcriptomic analysis of Chinese bayberry (Myricarubra) fruit development and ripening using RNA-Seq. BMC Genomics 13(1): 189–197.

    Google Scholar 

  • Fleming, Y.C.G., N. Armstrong, A. Morrice, M. Paterson, Goedert, and P. Cohen. 2000. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochemical Journal 352(1): 145–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomathi, R., and S. Vasantha. 2010. Screening for drought tolerance in sugarcane. Extension publication no 180, Sugarcane Breeding institute, Coimbatore, India.

  • Hiremath, P.J., A. Farmer, S.B. Cannon, J. Woodward, H. Kudapa, R. Tuteja, A. Kumar, A. Bhanuprakash, B. Mulaosmanovic, N. Gujaria, L. Krishnamurthy, P.M. Gaur, P.B. Kavikishor, T. Shah, R. Srinivasan, M. Lohse, Y. Xiao, C.D. Town, D.R. Cook, G.D. May, and R.K. Varshney. 2011. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal 9: 922–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houston, N.L., F. Chuanzhu, X. Qiu-Yun, S. Jan-Michael, J. Rudolf, and S.B. Rebecca. 2005. Phylogenetic analyses identify 10 Classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiology 137: 762–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  • http://www.genome.jp/kegg/ko.html.

  • Hubank, M., and D.G. Schatz. 1994. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Research 22(25): 5640–5648.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlimann, H.C., B. Pinson, M. Stadler-Waibel, S.C. Zeeman, and F.M. Freimoser. 2009. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Reports 10: 1003–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalifa, Y., A. Gilad, Z. Konrad, M. Zaccai, P.A. Scolnik, and D. Bar-Zvi. 2004. The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem Journal 381(Pt 2): 373–378.

    CAS  Google Scholar 

  • Kido, E.A., J.R. Ferreira Neto, R.L. Silva, V. Pandolfi, A.C. Guimarães, D.T. Veiga, M.C. Sabrina, C. Sergio, and M.B. Ana. 2012. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE. The Scientific World Journal 2012: 14.

    Google Scholar 

  • Lam, H.M., M.H. Hsieh, and G.M. Coruzzi. 1998. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant Journal 16: 345–353.

    CAS  PubMed  Google Scholar 

  • Li, Y.C., A.B. Korol, T. Fahima, A. Beiles, and E. Nevo. 2002. Microsatellites: Genomic distribution, putative functions and mutational mechanisms. Molecular Ecology 11: 2453–2465.

    CAS  PubMed  Google Scholar 

  • Liang, W., C. Li, F. Liu, H. Jiang, S. Li, J. Sun, X. Wu, and C. Li. 2009. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defense responses. Cell Research 19: 307–316.

    CAS  PubMed  Google Scholar 

  • Ling, H., QWuG Jinlong, L. Xu, and Y. Que. 2014. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS ONE 9(5): e97469.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J.X., R. Srivastava, P. Che, and S.H. Howell. 2007. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant Journal 51: 897–909.

    CAS  PubMed  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402–408.

    CAS  Google Scholar 

  • Maeshima, M. 2000. Vacuolar H + pyrophosphatase. Biochimica et Biophysica Acta (BBA) – Biomembranes 1465: 37–51.

    CAS  Google Scholar 

  • Mardis, E.R. 2008. The impact of next-generation sequencing technology on genetics. Trends in Genetics 24(3): 387–402.

    Google Scholar 

  • Nemeskéri, E., E. Sárdi, T. Szabó, and J. Nyéki. 2010. Ecological drought resistance and adaptability of apple varieties. International Journal of Horticultural Science 16(1): 113–122.

    Google Scholar 

  • planttfdb.cbi.pku.edu.cn/.

  • Prabu, G., P.G. Kawar, M.C. Pagariya, and D.T. Prasad. 2011. Identification of water deficit stress up regulated genes in sugarcane. Plant Molecular Biology Reporter 29: 291–304.

    Google Scholar 

  • Rautengarten, C., B. Usadel, L. Neumetzler, J. Hartmann, D. Bussis, and T. Altmann. 2008. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant Journal 54: 466–480.

    CAS  PubMed  Google Scholar 

  • Ribot, C., C. Zimmerli, E. Farmer, P. Reymond, and Y. Poirier. 2008. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiology 147: 696–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, F.A., L.L. Marcelo, and S.M. Zingaretti. 2009. Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science 176: 286–302.

    CAS  Google Scholar 

  • Sieciechowicz, K.A., K.W. Joy, and R.J. Ireland. 1988. The metabolism of asparagine in plants. Phytochemistry 27: 663–671.

    CAS  Google Scholar 

  • Thiel, T., W. Michalek, R. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of gene derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422.

    CAS  PubMed  Google Scholar 

  • Umezawa, T., M. Fujita, Y. Fujita, K. Yamaguchi-Shinozak, and K. Shinozaki. 2006. Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology 17(2): 113–122.

    CAS  PubMed  Google Scholar 

  • Varshney, R.K., A. Graner, and M.E. Sorrells. 2005. Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology 23(1): 48–55.

    CAS  PubMed  Google Scholar 

  • Varshney, R.K., T. Thiel, N. Stein, P. Langridge, and A. Graner. 2002. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular & Molecular Biology Letters 7: 537–546.

    CAS  Google Scholar 

  • Wang, C., S. Ying, H. Huang, K. Li, P. Wu, and H. Shou. 2009. Involvement of OsSPX1 in phosphate homeostasis in rice. Plant Journal 57: 895–904.

    CAS  PubMed  Google Scholar 

  • Wang, Q.Q., F. Liu, X.S. Chen, X.J.Ma.H.Q. Zeng, and Z.M. Yang. 2010. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96(6): 369–376.

    CAS  PubMed  Google Scholar 

  • Weber, A.P.M., K.L. Weber, K. Carr, C. Wilkerson, and J.B. Ohlrogge. 2007. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiology 144: 32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, K.C., L.P. Wei, C.M. Huang, Y.W. Wei, H.Q. Cao, L. Xu, H.B. Luo, S.L. Jiang, Z.N. Deng, and Y.R. Li. 2018. Transcriptome reveals differentially expressed genes in Saccharum spontaneum gx83-10 leaf under drought stress. Sugar Tech 20: 756–764.

    CAS  Google Scholar 

  • Wu, Q., LXuJ Guo, Y. Su, and Y. Que. 2013. Transcriptome profile analysis of sugarcane responses to sporisorium scitaminea infection using Solexa sequencing technology. BioMed Research International 2013: 9.

    Google Scholar 

  • Xu, Z.S., L. Liu, and Z.Y. Ni. 2009. W55a encodes a novel protein kinase that is involved in multiple stress responses. Journal of Integrative Plant Biology 51(1): 58–66.

    CAS  PubMed  Google Scholar 

  • Yamagata, H., S. Ueno, and T. Iwasaki. 1989. Isolation and characterization of a possible native cucumisin from developing melon fruits and its limited autolysis to cucumisin. Agricultural and Biological Chemistry 53: 1009–1017.

    CAS  Google Scholar 

  • Yamamoto, M., T. Wakatsuki, A. Hada, and A. Ryo. 2001. Use of serial analysis of gene expression (SAGE) technology. Journal of Immunological Methods 250(1–2): 45–66.

    CAS  PubMed  Google Scholar 

  • Yamashita, A., T. Ohnishi, I. Kashima, Y. Taya, and S. Ohno. 2001. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes & Development 15(17): 2215–2228.

    CAS  Google Scholar 

  • Zhao, L., F. Liu, WXuC Di, S. Zhou, Y. Xue, J. Yu, and Z. Su. 2009. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnology Journal 7: 550–561.

    CAS  PubMed  Google Scholar 

  • Zhou, Y., and M. Ni. 2010. Short hypocotyl under BLUE1 truncations and mutations alter its association with a signaling protein complex in Arabidopsis. The Plant Cell 22: 703–715.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Indian Council for Cultural Relations, New Delhi, for the Financial Assistance in the form of Fellowship to the first author and the University of Agricultural Sciences, Dharwad, India, for the financial assistance to carry out this work. We Also thank Dr Sanjay B Patil, Senior Breeder Sugarcane, ARS—Sankeshwar, University of Agricultural Science, Dharwad, India, for providing the plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumangala Bhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dapanage, M., Bhat, S. Transcriptome Profiling Through Next-Generation Sequencing in Sugarcane Under Moisture-Deficit Stress Condition. Sugar Tech 22, 396–410 (2020). https://doi.org/10.1007/s12355-020-00806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00806-1

Keywords

Navigation