Skip to main content
Log in

Anharmonic multi-phonon nonradiative transition: An ab initio calculation approach

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering. In this article, we provide a revised analysis of Huang’s original nonradiative multi-phonon (NMP) theory with ab initio calculations. First, we confirmed at the first-principles level that Huang’s concise formula gives the same results as the matrix-based formula, and that Huang’s high-temperature formula provides an analytical expression for the coupling constant in Marcus theory. Secondly, we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect. The corrected capture rates for defects in GaN and SiC agree well with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. L. Pekar, Zh. Eksp. Teor. Fiz. 20, 510 (1950).

    Google Scholar 

  2. K. Huang, and A. Rhys, Proc. R. Soc. Lond. A 204, 406 (1950).

    Article  ADS  Google Scholar 

  3. C. H. Henry, and D. V. Lang, Phys. Rev. B 15, 989 (1977).

    Article  ADS  Google Scholar 

  4. R. Kubo, and Y. Toyozawa, Prog. Theor. Phys. 13, 160 (1955).

    Article  ADS  Google Scholar 

  5. H. Gummel, and M. Lax, Ann. Phys. 2, 28 (1957).

    Article  ADS  Google Scholar 

  6. K. F. Freed, and J. Jortner, J. Chem. Phys. 52, 6272 (1970).

    Article  ADS  Google Scholar 

  7. R. Pässler, Phys. Stat. Sol. (B) 68, 69 (1975).

    Article  ADS  Google Scholar 

  8. K. Huang, Sci. Sin. 24, 27 (1981).

    Google Scholar 

  9. E. Gutsche, Phys. Stat. Sol. (B) 109, 583 (1982).

    Article  ADS  Google Scholar 

  10. K. Peuker, R. Enderlein, A. Schenk, and E. Gutsche, Phys. Stat. Sol. (B) 109, 599 (1982).

    Article  ADS  Google Scholar 

  11. M. G. Burt, J. Phys. C-Solid State Phys. 16, 4137 (1983).

    Article  ADS  Google Scholar 

  12. R. Pässler, Czech J. Phys. 32, 846 (1982).

    Article  ADS  Google Scholar 

  13. D. Goguenheim, and M. Lannoo, J. Appl. Phys. 68, 1059 (1990).

    Article  ADS  Google Scholar 

  14. F. Garciía-Santamariía, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, Nano Lett. 9, 3482 (2009).

    Article  ADS  Google Scholar 

  15. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Nat. Mater. 14, 636 (2015).

    Article  ADS  Google Scholar 

  16. S. J. He, and Z. H. Lu, Sci. China-Phys. Mech. Astron. 61, 027301 (2018).

    Article  ADS  Google Scholar 

  17. L. Shi, and L. W. Wang, Phys. Rev. Lett. 109, 245501 (2012).

    Article  ADS  Google Scholar 

  18. L. Shi, K. Xu, and L. W. Wang, Phys. Rev. B 91, 205315 (2015), arXiv: 1502.04559.

    Article  ADS  Google Scholar 

  19. J. Li, H. F. Zhu, Y. Y. Zhang, Z. K. Yuan, S. Chen, and X. G. Gong, Phys. Rev. B 96, 104103 (2017).

    Article  ADS  Google Scholar 

  20. A. Alkauskas, Q. Yan, and C. G. van de Walle, Phys. Rev. B 90, 075202 (2014), arXiv: 1407.4197.

    Article  ADS  Google Scholar 

  21. J. H. Yang, W. J. Yin, J. S. Park, J. Ma, and S. H. Wei, Semicond. Sci. Technol. 31, 083002 (2016).

    Article  ADS  Google Scholar 

  22. A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. van de Walle, New J. Phys. 16, 073026 (2014), arXiv: 1405.7313.

    Article  ADS  Google Scholar 

  23. G. Nan, X. Yang, L. Wang, Z. Shuai, and Y. Zhao, Phys. Rev. B 79, 115203 (2009).

    Article  ADS  Google Scholar 

  24. Y. Jia, S. Ponceí, A. Miglio, M. Mikami, and X. Gonze, Phys. Rev. B 100, 155109 (2019), arXiv: 1909.09713.

    Article  ADS  Google Scholar 

  25. S. Kim, S. N. Hood, and A. Walsh, Phys. Rev. B 100, 041202 (2019), arXiv: 1904.01348.

    Article  ADS  Google Scholar 

  26. K. Huang, Progr. Phys. 1, 31 (1981).

    Google Scholar 

  27. R. Borrelli, A. Capobianco, and A. Peluso, J. Phys. Chem. A 116, 9934 (2012).

    Article  Google Scholar 

  28. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).

    Article  ADS  Google Scholar 

  29. P. Nalbach, and M. Thorwart, Phys. Rev. Lett. 103, 220401 (2009), arXiv: 0906.1473.

    Article  ADS  Google Scholar 

  30. S. S. Zhang, W. Gao, H. Cheng, L. You, and H. P. Liu, Phys. Rev. Lett. 120, 063203 (2018).

    Article  ADS  Google Scholar 

  31. M. A. Reshchikov, and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

    Article  ADS  Google Scholar 

  32. D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).

    Article  ADS  Google Scholar 

  33. M. A. Reshchikov, A. J. Olsen, M. F. Bishop, and T. McMullen, Phys. Rev. B 88, 075204 (2013).

    Article  ADS  Google Scholar 

  34. C. H. Kai, X. J. Sun, Y. P. Jia, Z. M. Shi, K. Jiang, J. W. Ben, Y. Wu, Y. Wang, H. N. Liu, X. H. Li, and D. B. Li, Sci. China-Phys. Mech. Astron. 62, 067311 (2019).

    Article  Google Scholar 

  35. C. G. Hemmingsson, N. T. Son, A. Ellison, J. Zhang, and E. Janzeín, Phys. Rev. B 58, R10119 (1998); Phys. Rev. B 59, 7768 (1999).

    Article  ADS  Google Scholar 

  36. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).

    Book  Google Scholar 

  37. M. A. Reshchikov, and R. Y. Korotkov, Phys. Rev. B 64, 115205 (2001).

    Article  ADS  Google Scholar 

  38. M. A. Reshchikov, A. A. Kvasov, M. F. Bishop, T. McMullen, A. Usikov, V. Soukhoveev, and V. A. Dmitriev, Phys. Rev. B 84, 075212 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiangWei Jiang or LinWang Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grand Nos. 61927901, 11674241, 11574304, and 11774338). Lin-Wang Wang was supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the US Department of Energy (DOE) (Grant No. DE-AC02-05CH11231) through the Theory of Material project.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Information (SI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Wang, Z., Shi, L. et al. Anharmonic multi-phonon nonradiative transition: An ab initio calculation approach. Sci. China Phys. Mech. Astron. 63, 277312 (2020). https://doi.org/10.1007/s11433-020-1550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1550-4

Keywords

PACS number(s)

Navigation