Skip to main content
Log in

Structure and strain tunings of topological anomalous Hall effect in cubic noncollinear antiferromagnet Mn3Pt epitaxial films

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Antiferromagnets (AFMs) with chiral noncollinear spin structure have attracted great attention in recent years. However, the existing research has mainly focused on hexagonal chiral AFMs, such as Mn3Sn, Mn3Ga, Mn3Ge with low crystalline symmetry. Here, we present our systematical study for the face-centered cubic noncollinear antiferromagnetic Mn3Pt. By varying the alloy composition (x), we have successfully fabricated antiferromagnetic Mn1−xPtx epitaxial films on MgO substrates and have observed a crystalline structure transition from L10 MnPt to L12 Mn3Pt. The Mn3Pt exhibits a large anomalous Hall effect, which is in the same order of magnitude as those of ferromagnetic materials. Moreover, a large thickness-evolved strain effect is revealed in Mn3Pt films by X-ray diffraction (XRD) analysis based on the Scherrer method. Our work explores Mn3Pt as a promising candidate for topological antiferromagnetic spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Hall, Philos. 12, 157 (1881).

    Google Scholar 

  2. R. Karplus, and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

    ADS  Google Scholar 

  3. L. Berger, Phys. Rev. B 2, 4559 (1970).

    ADS  Google Scholar 

  4. J. Smit, Physica 24, 39 (1958).

    ADS  Google Scholar 

  5. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010), arXiv: 0904.4154.

    ADS  Google Scholar 

  6. P. He, L. Ma, Z. Shi, G. Y. Guo, J. G. Zheng, Y. Xin, and S. M. Zhou, Phys. Rev. Lett. 109, 066402 (2012), arXiv: 1112.0834.

    ADS  Google Scholar 

  7. S. J. Xu, Z. Shi, and S. M. Zhou, Phys. Rev. B 98, 024413 (2018).

    ADS  Google Scholar 

  8. H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014), arXiv: 1309.4041.

    ADS  Google Scholar 

  9. S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).

    ADS  Google Scholar 

  10. A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kubler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016), arXiv: 1511.03128.

    ADS  Google Scholar 

  11. N. Kiyohara, T. Tomita, and S. Nakatsuji, Phys. Rev. Appl. 5, 064009 (2016), arXiv: 1511.04619.

    ADS  Google Scholar 

  12. Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan, Phys. Rev. B 95, 075128 (2017), arXiv: 1610.04034.

    ADS  Google Scholar 

  13. Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang, Z. X. Feng, H. Yan, X. R. Wang, C. B. Jiang, J. M. D. Coey, and A. H. MacDonald, Nat. Electron. 1, 172 (2018).

    Google Scholar 

  14. Z. H. Liu, Y. J. Zhang, G. D. Liu, B. Ding, E. K. Liu, H. M. Jafri, Z. P. Hou, W. H. Wang, X. Q. Ma, and G. H. Wu, Sci. Rep. 7, 515 (2017).

    ADS  Google Scholar 

  15. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Google Scholar 

  16. D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019), arXiv: 1909.09580.

    ADS  Google Scholar 

  17. N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019), arXiv: 1903.00509.

    ADS  Google Scholar 

  18. L. Šmejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald, Nat. Phys. 14, 242 (2018).

    Google Scholar 

  19. N. H. Sung, F. Ronning, J. D. Thompson, and E. D. Bauer, Appl. Phys. Lett. 112, 132406 (2018), arXiv: 1804.00116.

    ADS  Google Scholar 

  20. Y. Zhang, J. Železný, Y. Sun, J. van den Brink, and B. Yan, New J. Phys. 20, 073028 (2018), arXiv: 1704.03917.

    ADS  Google Scholar 

  21. J. Železný, Y. Zhang, C. Felser, and B. Yan, Phys. Rev. Lett. 119, 187204 (2017), arXiv: 1702.00295.

    ADS  Google Scholar 

  22. X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Phys. Rev. Lett. 119, 056601 (2017), arXiv: 1612.06128.

    ADS  Google Scholar 

  23. M. Ikhlas, T. Tomita, T. Koretsune, M. T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Nat. Phys. 13, 1085 (2017), arXiv: 1710.00062.

    Google Scholar 

  24. C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, and C. Hess, Phys. Rev. B 100, 085111 (2019), arXiv: 1902.01647.

    ADS  Google Scholar 

  25. G. Y. Guo, and T. C. Wang, Phys. Rev. B 96, 224415 (2017), arXiv: 1708.05933.

    ADS  Google Scholar 

  26. T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. van’t Erve, Y. P. Kabanov, D. Rees, Y. Li, M. T. Suzuki, S. Patankar, M. Ikhlas, C. L. Chien, R. Arita, R. D. Shull, J. Orenstein, and S. Nakatsuji, Nat. Photon. 12, 73 (2018), arXiv: 1805.06758.

    ADS  Google Scholar 

  27. W. Feng, G. Y. Guo, J. Zhou, Y. Yao, and Q. Niu, Phys. Rev. B 92, 144426 (2015), arXiv: 1509.02865.

    ADS  Google Scholar 

  28. Y. Kota, H. Tsuchiura, and A. Sakuma, IEEE Trans. Magn. 44, 3131 (2008), arXiv: 0806.3627.

    ADS  Google Scholar 

  29. G. Li, Q. Yang, K. Manna, C. Fu, H. Deniz, J. Jena, F. Li, S. Parkin, G. Auffermann, Y. Sun, and C. Felser, Mater. Today Phys. 10, 100137 (2019).

    Google Scholar 

  30. E. Krén, M. Cselik, G. Kádár, and L. Pál, Phys. Lett. A 24, 198 (1967).

    ADS  Google Scholar 

  31. E. Krén, G. Kádár, L. Pál, J. Sólyom, P. Szabó, and T. Tarnóczi, Phys. Rev. 171, 574 (1968).

    ADS  Google Scholar 

  32. M. Buzzi, R. V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting, Phys. Rev. Lett. 111, 027204 (2013).

    ADS  Google Scholar 

  33. E. Bonera, M. Bollani, D. Chrastina, F. Pezzoli, A. Picco, O. G. Schmidt, and D. Terziotti, J. Appl. Phys. 113, 164308 (2013).

    ADS  Google Scholar 

  34. L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, Appl. Phys. Lett. 82, 2118 (2003).

    ADS  Google Scholar 

  35. J. Li, and M. Hitch, Miner. Eng. 86, 24 (2016).

    Google Scholar 

  36. N. Fuson, H. M. Randall, and D. M. Dennison, Phys. Rev. 56, 982 (1939).

    ADS  Google Scholar 

  37. A. Monshi, M. R. Foroughi, and M. R. Monshi, WJNSE 02, 154 (2012).

    ADS  Google Scholar 

  38. N. Zotov, J. Feydt, and A. Ludwig, Thin Solid Films 517, 531 (2008).

    ADS  Google Scholar 

  39. B. F. Ding, Sci. China-Phys. Mech. Astron. 55, 247 (2012).

    ADS  Google Scholar 

  40. C. Zhang, G. Pan, J. Luo, W. Li, and D. Chen, Sci. China Ser. G 47, 1 (2004).

    Google Scholar 

  41. T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, and C. Felser, Nat. Phys. 14, 200 (2018).

    Google Scholar 

  42. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

    ADS  Google Scholar 

  43. Z. Feng, H. Yan, and Z. Liu, Adv. Electron. Mater. 5, 1800466 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuePeng Qiu.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303202, and 2017YFA0305300), the National Natural Science Foundation of China (Grant Nos. 11974260, 11674246, 51501131, 51671147, 11874283, 51801152, and 11774064), the Natural Science Foundation of Shanghai (Grant Nos. 17ZR1443700, and 19ZR1478700), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N., Tang, M., Hu, S. et al. Structure and strain tunings of topological anomalous Hall effect in cubic noncollinear antiferromagnet Mn3Pt epitaxial films. Sci. China Phys. Mech. Astron. 63, 297511 (2020). https://doi.org/10.1007/s11433-019-1525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1525-6

Keywords

PACS number(s)

Navigation