Skip to main content
Log in

Seasonal Dynamics of Lipids and Their Fatty Acids in Leaf Buds of Betula pendula Roth and Alnus alnobetula subsp. fruticosa (Rupr.) Raus under Conditions of the Cryolithozone

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Absolute and relative content and composition of fatty acids, total lipids, and phospholipids, as principal constituents of cell membranes, were examined on vegetative buds of deciduous trees and shrubs throughout the summer and autumn–winter seasons under climatic conditions of the cryolithozone of Yakutia. Lipid metabolism was found to play an essential role in plants' adaptation to low autumnal and winter temperatures in the permafrost zone of Yakutia. The content of phosphatidylcholine in leaf buds of the birch Betula pendula Roth and the shrub Alnus alnobetula subsp. fruticosa (Rupr.) Raus increased throughout the observation period from 9.9 to 23.4 mg/g dry wt. In the autumn–winter period, the composition of fatty acids in the bud lipids of both species was characterized by a high content of unsaturated C18:2 and C18:3 acids. Biosynthesis of fatty acids in buds of deciduous trees and shrubs at a low temperature was apparently controlled by ω3-desaturase, whose activity elevated the content of α-linolenic acid from 2.9 to 5.7 mg/g in B. pendula and from 1.6 to 4.8 mg/g dry wt in A. alnobetula subsp. fruticosa. The seasonal decrease in air temperature was accompanied by an increase in the unsaturation coefficient (k) from 0.9 to 2.3 in B. pendula and from 1.4 to 1.8 in A. alnobetula subsp. fruticosa. It is proposed that the high content of polyunsaturated fatty acids in the autumn–winter period in vegetative buds of the examined woody plants is determined by a complex of climatic factors of the permafrost zone, such as a sharply contrasting day and night temperatures during plant dormancy, extremely low air temperature in winter (down to –60°С), and a short daylight period at this time of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Timofeev, P.A., Derev’ya i kustarniki Yakutii (Trees and Shrubs of Yakutia), Yakutsk: Bichik, 2003.

  2. Petrov, K.A., Kriorezistentnost’ rastenii: ekologo-fiziologicheskie i biokhimicheskie aspekty (Cryoresistance of Plants: Ecological, Physiological, and Biochemical Aspects), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2016.

  3. Penfield, S., Temperature perception and signal transduction in plants, New Phytol., 2008, vol. 179, p. 615.

    Article  CAS  Google Scholar 

  4. Vetchinnikova, L.V., Tatarinova, T.D., Serebryakova, O.S., Perk, A.A., Ponomarev, A.G., Il’inova, M.K., Petrova, N.E., and Vasil’eva, I.V., The fatty acid composition of membrane lipids in buds of silver birch during the winter–spring period under the conditions of the cryolithozone, Cell Tissue Biol., 2019, vol. 13, p. 397.

    Article  Google Scholar 

  5. Shulyakovskaya, T.A., Vetchinnikova, L.V., Kanyuchkova, G.K., and Il’inova, M.K., Lipid content and fatty acid composition of their fractions in different development phases of Betula pendula Roth. and B. pubescens Ehrh. buds and leaves, Rastit. Resur., 2004, vol. 40, p. 69.

    CAS  Google Scholar 

  6. Tatarinova, T.D., Bubyakina, V.V., Vetchinnikova, L.V., Perk, A.A., Ponomarev, A.G., and Vasil’eva, I.V., Dehydrin stress proteins in birch buds in regions with contrasting climate, Cell Tissue Biol., 2017, vol. 11, p. 483.

    Article  Google Scholar 

  7. Koteeva, N.K., Features of seasonal rhythmic ultrastructure of shoot apical meristema cells and mesophyll needles of Pinus sylvestris (Pinaceae), Bot. Zh., 2002, p. 50.

    Google Scholar 

  8. Trunova, T.I., Rastenie i nizkotemperaturnyi stress. 64‑e Timiryazevskoe chtenie (Plant and Low Temperature Stress, the 64th Timiryazev Lecture), Moscow: Nauka, 2007.

  9. Chirkova, T.V., Fiziologicheskie osnovy ustoichivosti rastenii (Physiological Foundations of Plant Resistance), St. Petersburg: St. Petersburg Gos. Univ., 2002.

  10. Los, D.A., Desaturazy zhirnykh kislot (Fatty Acid Desaturases), Moscow: Nauch. Mir, 2014.

  11. Christie, W.W., Preparation of ester derivatives of fatty acids for chromatographic analysis, in Advances in Lipid Methodology, Christie, W.W, Ed., Dundee: Oily Press, 1993, vol. 2, p. 69.

    Google Scholar 

  12. Christie, W.W., The AOCS lipid library: methyl esters of fatty acids, Arch. Mass Spectra, 2010. http://lipidlibrary.aocs.org/ms/arch_me/index.htm

  13. Lyons, J.M., Wheaton, T.A., and Pratt, H.R., Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants, Plant Physiol., 1964, vol. 39, p. 262.

    Article  CAS  Google Scholar 

  14. Jaworski, J.G. and Stumpf, P.K., Fat metabolism in higher plants. Properties of a soluble stearyl–acyl carrier protein desaturase from maturing Carthamus tinctorius,Arch. Biochem. Biophys., 1974, vol. 162, p. 158.

    Article  CAS  Google Scholar 

  15. Vaskovsky, V.E., Kostetsky, J.M., and Vasendin, E.Y., A universal reagent for phospholipid analysis, J. Chromatogr., 1975, vol. 114, p. 129. https://doi.org/10.1016/S0021-9673(00)85249-8

    Article  CAS  PubMed  Google Scholar 

  16. Wagner, H., Horhammer, L., and Wolf, P., Dünnschicht chromatographic von phosphatiden and glycolipiden, Biochem. Z., 1961, vol. 334, p. 175.

    CAS  PubMed  Google Scholar 

  17. Kates, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, North-Holland Publ. Co., 1972.

    Book  Google Scholar 

  18. Ozolina, N.V., Gurina, V.V., Nesterkina, I.S., and Nurminskii, V.N., Dynamics of phospholipid content in the vacuolar membrane of red beet taproots exposed to abiotic stress, Russ. J. Plant Physiol., 2018, vol. 65, p. 702.

    Article  CAS  Google Scholar 

  19. Vetchinnikova, L.V., Shulyakovskaya, T.A., and Kanyuchkova, G.K., Fatty acid composition of total lipids of Betula pendula Roth. and B. pubescens Ehrh. in Karelia, Rastit. Resur., 2000, vol. 36, p. 85.

    CAS  Google Scholar 

  20. Vetchinnikova, L.V., Bereza: voprosy izmenchivosti (morfo-fiziologicheskie i biokhimicheskie aspekty) (Birch: Variability Problems (Morpho-Physiological and Biochemical Aspects)), Moscow: Nauka, 2004.

  21. Ramli, U.S., Bakaer, D.S., Qunt, P.A., and Harwood, J.L., Control analysis of biosynthesis in tissue culture from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly, Biochem. J., 2007, vol. 364, p. 393.

    Article  Google Scholar 

  22. Mongrad, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Cassagne, C., and Bessoule, J.J., Taxonomy of Gymnospermae: multivariate analyses of leaf fatty acid composition, Phytochemistry, 2001, vol. 58, p. 101.

    Article  Google Scholar 

  23. Morozova, I.V., Chernobrovkina, N.P., Il’inova, M.K., Pchelkin, V.P., and Tsydendamdaev, V.D., Content and composition of fatty acids in total lipids from the buds of Betula pubescens, B. pendula, and B. pendula var. carelica,Russ. J. Plant Physiol., 2019, vol. 66, p. 335.

    Article  CAS  Google Scholar 

  24. Makarenko, S.P., Konstantinov, Yu.M., Shmakov, V.N., and Konenkina, T.A., Fatty acid composition of lipids in the calluses of two pine species Pinus sibirica and Pinus sylvestris,Russ. J. Plant Physiol., 2010, vol. 57, p. 739.

    Article  CAS  Google Scholar 

  25. Sofronova, V.E., Chepalov, V.A., Dymova, O.V., and Golovko, T.K., The role of pigment system of an evergreen dwarf shrub Ephedra monosperma in adaptation to the climate of Central Yakutia, Russ. J. Plant Physiol., 2014, vol. 61, p. 246.

    Article  CAS  Google Scholar 

  26. Wu, J., Seliskar, D., and Gallagher, J., The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress, Am. J. Bot., 2005, vol. 92, p. 852.

    Article  CAS  Google Scholar 

  27. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Structural, physiological, and biochemical aspects of salinity tolerance of halophytes, Russ. J. Plant Physiol., 2017, vol. 64, p. 464.

    Article  CAS  Google Scholar 

  28. Martz, F., Kivinlemi, S., Palva, T.E., and Sutinen, M.L., Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-acp synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves, J. Exp. Bot., 2006, vol. 57, p. 897.

    Article  CAS  Google Scholar 

  29. Drozdov, S.N. and Kurets, V.K., Nekotorye aspekty ekologicheskoi fiziologii rastenii (Some Aspects of Plant Ecological Physiology), Petrozavodsk: Petrozavodsk Gos. Univ., 2003.

Download references

Funding

The results were obtained as part of the state task of the Ministry of Education and Science of Russia (project no. FSRG-2020-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nokhsorov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Bulychev

Abbreviations: DBI—double bond index; DPG—diphosphatidylglycerol; FA—fatty acids; FAME—fatty acid methyl esters; LDR—linoleyl desaturase ratio; ODR—oleyl desaturase ratio; PA—phosphatidic acid; PC—phosphatidylcholine; PE—phosphatidylethanolamine; PG—phosphatidylglycerol; PUFA—polyunsaturated fatty acids; SDR—stearoyl desaturase ratio; k—unsaturation coefficient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nokhsorov, V.V., Dudareva, L.V. & Petrov, K.A. Seasonal Dynamics of Lipids and Their Fatty Acids in Leaf Buds of Betula pendula Roth and Alnus alnobetula subsp. fruticosa (Rupr.) Raus under Conditions of the Cryolithozone. Russ J Plant Physiol 67, 545–554 (2020). https://doi.org/10.1134/S1021443720030188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030188

Keywords:

Navigation