Skip to main content
Log in

Chloroplast Implication in the Tolerance to Salinity of the Halophyte Cakile maritima

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, the response of the chloroplastic antioxidant system of the halophyte Cakile maritima Scop. and its tolerance to NaCl stress have been studied using purified chloroplasts. Seedlings were grown in different salt concentrations (0, 100, 200 and 400 mmol/L NaCl) and plants were harvested after 40 days. Isolated chloroplasts were purified by centrifugation in density-gradients of Percoll. The evaluation of the oxidative stress was analysed measuring lipid peroxidation, carbonyl protein, \({\text{O}}_{2}^{ - }\) and H2O2 contents and the antioxidant status by measurement of the activities of superoxide dismutase, catalase, peroxidase and enzymes of the ascorbate–glutathione cycle as well as the antioxidants ascorbate and glutathione, in the purified chloroplasts. Results revealed that the best growth response of C. maritima under moderate salt stress was associated with a low oxidative stress, the highest activities of SOD, POD and APX and the highest glutathione content. The interaction between the water status of the plant and mineral nutrition seems to be strongly involved in the plant performance under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhang, J.L. and Shi, H., Physiological and molecular mechanisms of plant salt tolerance, Photosynth. Res., 2013, vol. 115, p. 1.

    Article  CAS  Google Scholar 

  2. Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., and Yurin, V., Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment, J. Exp. Bot., 2014, vol. 65, p. 1259.

    Article  CAS  Google Scholar 

  3. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405.

    Article  CAS  Google Scholar 

  4. Ozgur, R., Uzilday, B., Sekmen, A.H., and Turkan, I., Reactive oxygen species regulation and antioxidant defence in halophytes, Funct. Plant Biol., 2013, vol. 40, p. 832.

    Article  CAS  Google Scholar 

  5. Ben Hamed Louati, I., Arbe let-Bonnin, D., Biligui, B., Gakière, B., Abdelly, C., Ben Hamed, K., and Bouteau, F., Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidospis thaliana,Plant Sci., 2016, vol. 247, p. 49.

    Article  Google Scholar 

  6. Ben Amor, N., Jiménez, A., Megdiche, W., Lundqvist, M., Sevilla, F., and Abdelly, C., Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima,Physiol. Plant., 2006, vol. 126, p. 446.

    Article  CAS  Google Scholar 

  7. Hewitt, E.J., Sand and Water Culture Methods Used in the Study of Plant Nutrition, Bucks: Commonwealth Agricul-tural Bureaux, 1966.

    Google Scholar 

  8. Barrs, H.D., Determination of water deficits in plant tissues, in Water Deficits and Plant Growth, Kozlowski, T.T., Ed., New York: Academic, 1968, vol. 1, p. 235.

    Google Scholar 

  9. Hernández, J.A., Olmos, E., Corpas, F.J., Sevilla, F., and del Río, L.A., Salt-induced oxidative stress in chloroplasts of pea plants, Plant Sci., 1995, vol. 105, p. 151.

  10. Madhava, R.K.V. and Sresty, T.V.S., Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses, Plant Sci., 2000, vol. 157, p. 113.

    Article  Google Scholar 

  11. Levin, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lens, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R., Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 1990, vol. 186, p. 464.

    Article  Google Scholar 

  12. Frew, J., Jones, P., and Scholes, G., Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution, Anal. Chim. Acta, 1983, vol. 155, p. 130.

    Article  Google Scholar 

  13. Boveris, A., Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria, Methods Enzymol., 1984, vol. 105, p. 429.

    Article  CAS  Google Scholar 

  14. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276.

    Article  CAS  Google Scholar 

  15. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  16. Ranieri, A., Petacco, F., Castagna, A., and Soldatini, G.F., Redox state and peroxidase system in sunflower plants exposed to ozone, Plant Sci., 2000, vol. 159, p. 159.

    Article  CAS  Google Scholar 

  17. Jimènez, A., Hernandez, J.A., del Rio, L.A., and Sevilla, F., Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves, Plant Physiol., 1997, vol. 114, p. 275.

  18. Arrigoni, O., Dipierro, S., and Borraccino, G., Ascorbate free radical reductase: a key enzyme of the ascorbic acid system, FEBS Lett., 1981, vol. 125, p. 242.

    Article  CAS  Google Scholar 

  19. Dalton, D.A., Baird, L.M., Langeberg, L., Taugher, C.Y., Anyan, W.R., Vance, C.P., and Sarath, G., Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules, Plant Physiol., 1993, vol. 102, p. 481.

    Article  CAS  Google Scholar 

  20. Edwards, E.A., Rawsthorne, S., and Mullineaux, P.M., Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.), Planta, 1990, vol. 180, p. 278.

    Article  CAS  Google Scholar 

  21. Doehlert, D.C., Kuo, T.M., and Felker, F.C., Enzymes of sucrose and hexose metabolism in developing kernels of two inbreeds of maize, Plant Physiol., 1988, vol. 81, p. 511.

    Google Scholar 

  22. Bergmeyer, H.U., Bernt, E., Schmidt, F., and Stork, H., D-Glucose. Bestimmung mit Hexokinase und Glucose-6-phosphate Dehydrogenase, in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1974, p. 1196.

    Google Scholar 

  23. Kleczkowski, A. and Edwards, E., Identification of hydroxypyruvate and glyoxylate reductases in maize leaves, Plant Physiol., 1989, vol. 91, p. 278.

    Article  CAS  Google Scholar 

  24. Torrecillas, A., Léon, A., del Amor, F., and Martinez-Mompean, M.C., Rapid determination of chlorophyll, Fruits, 1984, vol. 39, p. 617.

    CAS  Google Scholar 

  25. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  Google Scholar 

  26. Knörzer, O.C., Durner, J., and, Böger, P., Alterations in the oxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress, Physiol. Plant., 1996, vol. 97, p. 388.

  27. Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, G., and Abdelly, C., Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity, Plant Sci., 2005, vol. 168, p. 889.

    Article  CAS  Google Scholar 

  28. Uzilday, B., Ozgur, R., Sekmen, A.H., Yildiztugay, E., and Turkan, I., Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella pa-rvula) under salinity, Ann. Bot., 2015, vol. 115, p. 449.

    Article  CAS  Google Scholar 

  29. Assaha, D.V.M., Ueda, A., Saneoka, H., Al-Yahyai, R., and Yaish, M.W., The role of Na+ and K+ transporters in salt stress adaptation in glycophytes, Front. Physiol., 2017, vol. 8, p. 1.

    Article  Google Scholar 

  30. Flowers, T.J., Troke, P.F., and Yeo, A.R., The mechanism of salt tolerance in halophytes, Annu. Rev. Plant Physiol., 1977, vol. 28, p. 89.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Tunisian Ministry of Higher Education and Scientific Research and The Spanish Agency of International cooperation for the Development (AECID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ben Amor.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Amor, N., Jiménez, A., Boudabbous, M. et al. Chloroplast Implication in the Tolerance to Salinity of the Halophyte Cakile maritima. Russ J Plant Physiol 67, 507–514 (2020). https://doi.org/10.1134/S1021443720030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030048

Keywords:

Navigation