Skip to main content
Log in

Physiological and Molecular Effects of Silver Nanoparticles Exposure on Purslane (Portulaca oleracea L.)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Due to the antifungal and antibacterial properties, silver nanoparticles (AgNPs) are now widely used in consumer products. In this research, the effects of various concentrations of AgNPs (0, 2.5, 5, 10, 20, 40 and 80 ppm) on growth, contents of micro- and macroelements, physiological traits and expression of PAL and GSH genes of purslane (Portulaca oleracea L.) plants were investigated. The results showed that application of AgNPs resulted in a dose-dependent enhancement in accumulation of silver (Ag) in both root and leaf tissues, however, the Ag accumulated at the root more than the leaf at all levels of the AgNPs treatment. AgNPs treatment over 20 ppm reduced the growth, biomass production and accumulation of macroelements (Ca and Mg) and microelements (Zn, Cu, Mn and B) and increased contents of H2O2, MDA and DPPH scavenging activity. Application of AgNPs also increased the activity of antioxidant enzymes such as SOD, CAT and POD enzymes compared to control treatments. The activity and expression of PAL and CHS enzymes significantly increased under treatment of AgNPs. Our results indicate that increasing the activity of antioxidant enzymes and regulating the expression and activity of PAL and CHS enzymes are mechanisms to counteract the oxidative stress induced by AgNPs in the purslane plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H., and Sigg, L., Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicol-ogy, 2008, vol. 17, p. 372.

    Article  CAS  Google Scholar 

  2. Shams, G., Ranjbar, M., and Amiri, A., Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. Negeen), J. Nanopart. Res., 2013, vol. 15: 1630.

    Article  Google Scholar 

  3. Sharma, P., Bhatt, D., Zaidi, M.G.H., Saradhi, P., Khanna, P.K., and Arora, S., Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea,Appl. Biochem. Biotechnol., 2012, vol. 167, p. 2225.

    Article  CAS  Google Scholar 

  4. Nair, P.M.G. and Chung, I.M., Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings, Chemosphere, 2014, vol. 112, p. 105.

    Article  CAS  Google Scholar 

  5. Jiang, H.S., Qiu, X.N., Li, G.B., Li, W., and Yin, L.Y., Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza,Environ. Toxicol. Chem., 2014, vol. 33, p. 1398.

    Article  CAS  Google Scholar 

  6. Simopoulos, A.P., Omega-3 fatty acids and antioxidants in edible wild plants, Biol. Res., 2004, vol. 37, p. 263.

    Article  Google Scholar 

  7. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  Google Scholar 

  8. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants, Plant Sci., 2000, vol. 151, p. 59.

    Article  CAS  Google Scholar 

  9. Brand-Williams, W., Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity, LWT–Food Sci. Technol., 1995, vol. 28, p. 25.

    Article  CAS  Google Scholar 

  10. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Bioch-em., 1976, vol. 72, p. 248.

    Article  CAS  Google Scholar 

  11. Bailly, C., Benamar, A., Corbineau, F., and Come, D., Changes in malondialdehyde content and in superoxide dismutase, catalase, and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated ageing, Physiol. Plant., 1996, vol. 97, p. 104.

    Article  CAS  Google Scholar 

  12. Chance, M. and Maehly, A.C., Assay of catalases and peroxidases, Methods Enzymol., 1955, vol. 2, p. 764.

    Article  Google Scholar 

  13. Ochoa-Alejo, N. and Gómez-Peralta, J.E., Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.), J. Plant Physiol., 1993, vol. 41, p. 147.

    Article  Google Scholar 

  14. Thuesombat, P., Hannongbua, S., Akasit, S., and Chadchawan, S., Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotoxicol. Environ. Saf., 2014, vol. 104, p. 302.

    Article  CAS  Google Scholar 

  15. Geisler-Lee, J., Wang, Q., Yao, Y., Zhang, W., Geisler, M., Li, K., Huang, Y., Chen, Y., Kolmakov, A., and Ma, X., Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana, Nanotoxicology, 2013, vol. 7, p. 323.

  16. Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value, Front. Plant Sci., 2016, vol. 7: 90.

  17. Cvjetko, P., Milošiá, A., Domijan, A.M., Vinković Vrč ek, I., Tolić , S., Peharec Štefanić , P., Letofsky-Papst, I., Tkalec, M., and Balen, B., Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots, Ecotoxicol. Environ. Saf., 2017, vol. 137, p. 18.

    Article  CAS  Google Scholar 

  18. Rastogi, A., Zivcak, M., Tripathi, D.K., Yadav, S., and Kalaji, H.M., Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast, Photosynthetica, 2019, vol. 57, p. 209.

    Article  CAS  Google Scholar 

  19. Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L., Nunez, J.E., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Synchrotron verification of TiO2 nanoparticle transfer from soil into the food chain, Environ. Sci. Technol., 2013, vol. 47, p. 11592.

    Article  CAS  Google Scholar 

  20. Trujillo-Reyes, J., Majumdar, S., Botez, C.E., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J. Hazard. Mater., 2014, vol. 267, p. 255.

    Article  CAS  Google Scholar 

  21. Hong, J., Rico, C.M., Zhao, L., Adeleye, A.S., Keller, A.A., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa), Environ. Sci. Proc. Imp., 2015, vol. 17, p. 177.

    CAS  Google Scholar 

  22. Magesky, A. and Pelletier, E., Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin, Aquat. Toxicol., 2015, vol. 167, p. 106.

    Article  CAS  Google Scholar 

  23. Zhang, H.Y., Jiang, Y.N., He, Z.Y., and Ma, M., Cadmium accumulation and oxidative burst in garlic (Allium sativum), J. Plant Physiol., 2005, vol. 162, p. 977.

    Article  CAS  Google Scholar 

  24. Mehrian, S., Heidari, R., and Rahmani, F., Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants, Indian J. Plant Physiol., 2015, vol. 20, p. 257.

    Article  Google Scholar 

  25. Ghorbani, A., Razavi, S.M., Omran, V.O.G., and Pirdashti, H., Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato, Russ. J. Plant Physiol., 2018, vol. 65, p. 898.

    Article  CAS  Google Scholar 

  26. Dao, T.T.H., Linthorst, H.J.M., and Verpoorte, R., Chalcone synthase and its functions in plant resistance, Phytochem. Rev., 2011, vol. 10, p. 397.

    Article  CAS  Google Scholar 

  27. Gholizadeh, A. and Kohnehrou, B.B., Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves, Braz. J. Plant Physiol., 2010, vol. 22, p. 217.

    Article  Google Scholar 

  28. Kosyk, O.I., Khomenko, I.M., Batsmanova, L.M., and Taran, N.Y., Phenylalanine ammonia-lyase activity and anthocyanin content in different varieties of lettuce under the cadmium influence, Ukr. Biochem. J., 2017, vol. 89, p. 85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pishkar.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Z., Pishkar, L., Iranbakhsh, A. et al. Physiological and Molecular Effects of Silver Nanoparticles Exposure on Purslane (Portulaca oleracea L.). Russ J Plant Physiol 67, 521–528 (2020). https://doi.org/10.1134/S1021443720030231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030231

Keywords:

Navigation