Skip to main content
Log in

CaСl2 Salt Signaling in Primary Root Architecture and Lateral Root Emergence in Arabidopsis thaliana

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant root architecture modulates during developmental stages and adjusts with the environmental condition. The cytosolic calcium which is a ubiquitous secondary messenger in all eukaryotes strongly affects the root system in Arabidopsis thaliana (L.) Heynh. We proposed that calcium chloride gradients affect PIN2 expression, which in term modulates root architecture and lateral root emergence. In the present study, the root development of PIN2 overexpressing lines of A. thaliana were investigated on different CaCl2 concentrations. This study found that the abundance of PIN2 protein has a direct effect on the root curvature with respect to CaCl2 gradient. In the presence of low concentration of CaCl2, PIN2 protein is stabilized and its subsequent accumulation lead to straight root architecture. However, as the CaCl2 concentration were increased, PIN2 protein destabilized and subsequently degraded which in turn showed a wavy root phenotype. On the other hand, different concentrations of CaCl2 did not show any effect on PIN2 gene at transcript level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ullah, A., Sun, H., Yang, X., and Zhang, X., Drought coping strategies in cotton: increased crop per drop, Plant Biotechnol. J., 2017, vol. 15, p. 271.

    Article  CAS  Google Scholar 

  2. Ullah, A., Sun, H., Yang, X., and Zhang, X., A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species, Physiol. Plant., 2018, vol. 162, p. 439.

    Article  CAS  Google Scholar 

  3. Zolla, G., Yair, M., Heimer, and Barak, S., Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots, J. Exp. Bot., 2010, vol. 61, p. 211.

    Article  CAS  Google Scholar 

  4. Malamy, J.E., Intrinsic and environmental response pathways that regulate root system architecture, Plant Cell Environ., 2005, vol. 28, p. 67.

    Article  CAS  Google Scholar 

  5. Ullah, A., Manghwar, H., Shaban, M., Khan, A.H., Akbar, A., Ali, U., Ali, E., and Fahad, S., Phytohormones enhanced drought tolerance in plants: a coping strategy, Environ. Sci. Pollut. Res., 2019, vol. 25, p. 33103.

    Article  Google Scholar 

  6. Chen, Q., Liu, Y., Maere, S., Lee, E., van Isterdael, G., Xie, Z., Xuan, W., Lucas, J., Vassilileva, V., Kitakura, S., Marhavý, P., Wabnik, K., Geldner, N., Benková, E., Le, J., et al., A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development, Nat. Commun., 2015, vol. 6: 8821.

    Article  CAS  Google Scholar 

  7. Linkohr, B.I., Williamson, L.C., Fitter, A.H., and Leyser, H.M.O., Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis,Plant J., 2002, vol. 29, p. 751.

    Article  CAS  Google Scholar 

  8. Malamy, J.E. and Ryan, K.S., Environmental regulation of lateral root initiation in Arabidopsis,Plant Physiol., 2001, vol. 127, p. 899.

    Article  CAS  Google Scholar 

  9. Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A., Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci., 2007, vol. 12, p. 98.

    Article  CAS  Google Scholar 

  10. Potters, G., Pasternak, T.P., Guisez, Y., and Jansen, M.A.K., Different stresses, similar morphogenic responses: integrating a plethora of pathways, Plant Cell Environ., 2009, vol. 32, p. 158.

    Article  Google Scholar 

  11. Croser, C., Renault, S., Franklin, J., and Zwiazek, J., The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksian-a,Environ. Pollut., 2001, vol. 115, p. 9.

    Article  CAS  Google Scholar 

  12. Akhtar, S.S., Andersen, M.N., Naveed, M., Zahir, Z.A., and Liu, F., Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize, Funct. Plant Biol., 2015, vol. 42, p. 770.

    Article  CAS  Google Scholar 

  13. Talaat, N.B., Ghoniem, A.E., Abdelhamid, M.T., and Shawky, B.T., Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress, Plant Growth Regul., 2015, vol. 75, p. 281.

    Article  CAS  Google Scholar 

  14. Deak, K.I. and Malamy, J., Osmotic regulation of root system architecture, Plant J., 2005, vol. 43, p. 17.

    Article  CAS  Google Scholar 

  15. Ding, Z.J., Yan, J.Y., Li, C.X., Li, G.X., Wu, Y.R., and Zheng, S.J., Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis, Plant J., 2015, vol. 84, p. 56.

    Article  CAS  Google Scholar 

  16. Xiong, L., Wang, R.G., Mao, G., and Koczan, J.M., Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid, Plant Physiol., 2006, vol. 142, p. 1065.

    Article  CAS  Google Scholar 

  17. Kim, S., Kang, J.Y., Cho, D.I., Park, J.H., and Kim, S.Y., ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance, Plant J., 2004, vol. 40, p. 75.

    Article  CAS  Google Scholar 

  18. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, p. 473.

    Article  CAS  Google Scholar 

  19. Rahman, A., Takahashi, M., Shibasaki, K., Wu, S., Inaba, T., Tsurumi, S., and Baskin, T.I., Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells, Plant Cell, 2010, vol. 22, p. 1762.

    Article  CAS  Google Scholar 

  20. Prinzenberg, A.E., Barbier, H., Stich, B., Salt, D.E., and Reymond, M., Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis, Plant Physiol., 2010, vol. 154, p. 1361.

    Article  CAS  Google Scholar 

  21. Hepler, P.K., Calcium: a central regulator of plant growth and development, Plant Cell, 2005, vol. 17, p. 2142.

    Article  CAS  Google Scholar 

  22. Karthika, K.S., Rashmi, I., and Parvathi, M.S., Biological functions, uptake and transport of essential nutrients in relation to plant growth, in Plant Nutrients and Abiotic Stress Tolerance, Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., and Hawrylak-Nowak, B., Eds., Singapore: Springer, 2018, p. 1.

    Google Scholar 

  23. Ullah, A., Mushtaq, H., Fahad, S., Shah, A., and Chaudhary, H.J., Plant growth promoting potential of bacterial endophytes in novel association with Olea ferrugin-ea and Withania coagulans,Microbiology, 2017, vol. 86, p. 119.

    Article  CAS  Google Scholar 

  24. Julkowska, M.M. and Testerink, C., Tuning plant signaling and growth to survive salt, Trends Plant Sci., 2015, vol. 20, p. 586.

    Article  CAS  Google Scholar 

  25. Ditengou, F.A., Teale, W.D., Kochersperger, P., Flittner, K.A., Kneuper, I., van der Graaff, E., Nziengui, H., Pinosa, F., Li, X., Nitschke, R., Laux, T., and Palme, K., Mechanical induction of lateral root initiation in Arabid-opsis thaliana,Proc. Natl. Acad. Sci. USA, 2008, vol. 105, p. 18818.

    Article  CAS  Google Scholar 

  26. Ullah, A., Akbar, A., Luo, Q., Khan, A.H., Manghwar, H., Shaban, M., and Yang, X., Microbiome diversity in cotton rhizosphere under normal and drought conditions, Microb. Ecol., 2019, vol. 77, p. 429.

    Article  CAS  Google Scholar 

  27. Okada, K. and Shimura, Y., Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus, Science, 1990, vol. 250, p. 274.

    Article  CAS  Google Scholar 

  28. Simmons, C., Söll, D., and Migliaccio, F., Circumnutation and gravitropism cause root waving in Arabidopsis thaliana,J. Exp. Bot., 1995, vol. 46, p. 143.

    Article  CAS  Google Scholar 

  29. Buer, C.S., Masle, J., and Wasteneys, G.O., Growth conditions modulate root-wave phenotypes in Arabidopsis, Plant Cell Physiol., 2000, vol. 41, p. 1164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Nisar designed the project, conducted experiments and wrote the paper. A. Ullah and H. Park modified and reviewed the paper. Z. Ali, A. Ali, R. Aman and S.F. Wadood helped M. Nisar in the experiments.

Corresponding author

Correspondence to M. Nisar.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, M., Ali, Z., Ali, A. et al. CaСl2 Salt Signaling in Primary Root Architecture and Lateral Root Emergence in Arabidopsis thaliana. Russ J Plant Physiol 67, 515–520 (2020). https://doi.org/10.1134/S1021443720030176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030176

Keywords:

Navigation