Skip to main content
Log in

Sumsets associated with Wythoff sequences and Fibonacci numbers

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(\alpha = (1+\sqrt{5})/2\) be the golden ratio, and let \(B(\alpha ) = (\left\lfloor n\alpha \right\rfloor )_{n\ge 1}\) and \(B(\alpha ^2) = \left( \left\lfloor n\alpha ^2\right\rfloor \right) _{n\ge 1}\) be the lower and upper Wythoff sequences, respectively. In this article, we obtain a new estimate concerning the fractional part \(\{n\alpha \}\) and study the sumsets associated with Wythoff sequences. For example, we show that every \(n\ge 4\) can be written as a sum of two terms in \(B(\alpha )\) and a positive integer n can be written as the sum \(\left\lfloor a\alpha \right\rfloor +\left\lfloor b\alpha ^2\right\rfloor \) for some \(a, b\in {\mathbb {N}}\) if and only if n is not one less than a Fibonacci number. The structure of the set \(B(\alpha ^2)+B(\alpha ^2)\) contains some kinds of fractal and palindromic patterns and is more complicated than the other sets, but we can also give a complete description of this set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Beatty, Problem 3173. Am. Math. Mon. 33, 159 (1926)

    Article  MathSciNet  Google Scholar 

  2. S. Beatty, A. Ostrowski, J. Hyslop, A.C. Aitken, Solution to Problem 3173. Am. Math. Mon. 34, 159–160 (1927)

    Article  Google Scholar 

  3. H. Davenport, On the addition of residue classes. J. Lond. Math. Soc. 10, 30–32 (1935)

    Article  Google Scholar 

  4. A.S. Fraenkel, The bracket function and complementary sets of integers. Can. J. Math. 21, 6–27 (1969)

    Article  MathSciNet  Google Scholar 

  5. A.S. Fraenkel, How to beat your Wythoff games’ opponent on three fronts. Am. Math. Mon. 89, 353–361 (1982)

    Article  MathSciNet  Google Scholar 

  6. A.S. Fraenkel, Wythoff games, continued fractions, cedar trees and Fibonacci searches. Theor. Comput. Sci. 29, 49–73 (1984)

    Article  MathSciNet  Google Scholar 

  7. A.S. Fraenkel, Heap games, numeration systems and sequences. Ann. Comb. 2, 197–210 (1998)

    Article  MathSciNet  Google Scholar 

  8. G.A. Freiman, Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs, vol. 37 (American Mathematical Society, 1973)

  9. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edn. (Addison-Wesley, Boston, 1994)

    MATH  Google Scholar 

  10. H. Halberstam, K.F. Roth, Sequences (Springer, Berlin, 1983)

    Book  Google Scholar 

  11. N. Khaochim, P. Pongsriiam, The general case on the order of appearance of product of consecutive Lucas numbers. Acta Math. Univ. Comen. 87, 277–289 (2018)

    MathSciNet  MATH  Google Scholar 

  12. N. Khaochim, P. Pongsriiam, On the order of appearance of products of Fibonacci numbers. Contrib. Discrete Math. 13(2), 45–62 (2018)

    MathSciNet  MATH  Google Scholar 

  13. C. Kimberling, Complementary equations and Wythoff sequences. J. Integer Seq. 11, Article 08.3.3 (2008)

  14. C. Kimberling, Beatty sequence and Wythoff sequences, generalized. Fibonacci Q. 49, 195–200 (2011)

    MathSciNet  MATH  Google Scholar 

  15. D.A. Klarner, Representation of \(N\) as a sum of distinct elements from special sequence. Fibonacci Q. 4, 289–305 (1966)

    MathSciNet  MATH  Google Scholar 

  16. T. Koshy, Fibonacci and Lucas Numbers with Applications (Wiley, New York, 2001)

    Book  Google Scholar 

  17. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Springer, Berlin, 1996)

    Book  Google Scholar 

  18. K. Onphaeng, P. Pongsriiam, Jacobsthal and Jacobsthal–Lucas numbers and sums introduced by Jacobsthal and Tverberg. J. Integer Seq. 20, Article 17.3.6 (2017)

  19. K. Onphaeng, P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers. Fibonacci Q. 52, 163–171 (2014)

    MathSciNet  MATH  Google Scholar 

  20. K. Onphaeng, P. Pongsriiam, The converse of exact divisibility by powers of the Fibonacci and Lucas numbers. Fibonacci Q. 56, 296–302 (2018)

    MathSciNet  MATH  Google Scholar 

  21. P. Phunphayap, P. Pongsriiam, Explicit formulas for the \(p\)-adic valuations of Fibonomial coefficients. J. Integer Seq. 21, Article 18.3.1 (2018)

  22. P. Phunphayap, P. Pongsriiam, Reciprocal sum of palindromes. J. Integer Seq., 22, Article 19.8.6 (2019)

  23. J. Pitman, Sumsets of finite Beatty sequences. Electron. J. Comb. 8, Article R15, 1–23 (2001)

  24. P. Pongsriiam, A complete formula for the order of appearance of the powers of Lucas numbers. Commun. Korean Math. Soc. 31, 447–450 (2016)

    Article  MathSciNet  Google Scholar 

  25. P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers. J. Integer Seq. 17, Article 14.11.2 (2014)

  26. P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results. JP J. Algebra Number Theory Appl. 38, 363–372 (2016)

    MATH  Google Scholar 

  27. P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard–Ramanujan equation. Commun. Korean Math. Soc. 32, 511–522 (2017)

    MathSciNet  MATH  Google Scholar 

  28. P. Pongsriiam, Fibonacci and Lucas numbers which are one away from their products. Fibonacci Q. 55, 29–40 (2017)

    MathSciNet  MATH  Google Scholar 

  29. P. Pongsriiam, Integral values of the generating functions of Fibonacci and Lucas numbers. Coll. Math. J. 48, 97–101 (2017)

    Article  MathSciNet  Google Scholar 

  30. P. Pongsriiam, Local behaviors of the number of relatively prime sets. Int. J. Number Theory 12, 1575–1593 (2016)

    Article  MathSciNet  Google Scholar 

  31. P. Pongsriiam, Longest arithmetic progressions in reduced residue systems. J. Number Theory 183, 309–325 (2018)

    Article  MathSciNet  Google Scholar 

  32. P. Pongsriiam, Relatively prime sets, divisor sums, and partial sums. J. Integer Seq. 16, Article 13.9.1 (2013)

  33. P. Pongsriiam, The order of appearance of factorials in the Fibonacci sequence and certain Diophantine equations. Period. Math. Hung. 79, 141–156 (2019)

    Article  MathSciNet  Google Scholar 

  34. P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer. Int. J. Math. Comput. Sci. 14(1), 27–46 (2019)

    MathSciNet  MATH  Google Scholar 

  35. P. Pongsriiam, R.C. Vaughan, The divisor function on residue classes I. Acta Arith. 168, 369–381 (2015)

    Article  MathSciNet  Google Scholar 

  36. P. Pongsriiam, R.C. Vaughan, The divisor function on residue classes II. Acta Arith. 182, 133–181 (2018)

    Article  MathSciNet  Google Scholar 

  37. P. Pongsriiam’s ResearchGate profile, https://www.researchgate.net/profile/Prapanpong_Pongsriiam. Accessed 1 Mar 2019

  38. N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org. Accessed 1 Mar 2019

  39. T. Tao, V. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  40. S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications (Dover Publications, New York, 2007)

    MATH  Google Scholar 

  41. R.C. Vaughan, The Hardy–Littlewood Method, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  42. W.A. Wythoff, A modification of the game of Nim. Nieuw Arch. Wiskd. 2, 199–202 (1905–07)

  43. E. Zeckendorf, Représentation des nombrels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. R. Sci. Liége 41, 179–182 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his or her suggestions and for pointing out the work of Jane Pitman [23], which improve the quality and the exposition of this article. Prapanpong Pongsriiam received financial support jointly from the Thailand Research Fund and Faculty of Science Silpakorn University, Grant Number RSA5980040. Prapanpong Pongsriiam is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapanpong Pongsriiam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawsumarng, S., Khemaratchatakumthorn, T., Noppakaew, P. et al. Sumsets associated with Wythoff sequences and Fibonacci numbers. Period Math Hung 82, 98–113 (2021). https://doi.org/10.1007/s10998-020-00343-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-020-00343-0

Keywords

Mathematics Subject Classification

Navigation