Skip to main content
Log in

Space-time Gevrey smoothing effect for the dissipative nonlinear Schrödinger equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We study the global Cauchy problem for the dissipative nonlinear Schrödinger equations in the setting of the fractional Sobolev space \(H^s,\)\(0<s<\min (n/2,1).\) In particular, we show the space-time Gevrey smoothing effect for global solutions to the dissipative nonlinear Scrödinger equations with data which belong to the exponential weighted Sobolev space with large norm. The proof of main theorem of this study is based on the a priori estimate for \(H^s\) solutions and a continuation method for analytic solutions has been introduced in Hoshino (J Dyn Differ Equ 4:2339–2351, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourer Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces, an Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  3. Bona, J.L., Grujić, Z., Kalisch, H.: Alegbraic lower bounds for the uniform radius of spatial analyticty for the generalized KdV equation. Ann. I. H. Poincaré Anal. Non Linéaire 22, 783–797 (2005)

    Article  Google Scholar 

  4. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  5. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equations in \(H^s\). Nonlinear Anal. 14, 807–836 (1990)

    Article  MathSciNet  Google Scholar 

  6. Hayashi, N., Kato, K.: Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations. Commun. Math. Phys. 184, 273–300 (1997)

    Article  Google Scholar 

  7. Hayashi, N., Kato, K., Naumkin, P.I.: On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27, 483–497 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Hoshino, G.: Space-time analytic smoothing effect for a system of nonlinear Schrödinger equations with non pseudo-conformally invariant interactions. Commun. Partial Differ. Equ. 42, 802–819 (2017)

    Article  Google Scholar 

  9. Hoshino, G.: Space-time analytic smoothing effect for global solutions to a system of nonlinear Schrödinger equations with large data. Ann. Henri Poincaré 19, 2101–2114 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hoshino, G.: Scattering for solutions of a dissipative nonlinear Schrödinger equation. J. Differ. Equ. 266, 4997–5011 (2019)

    Article  Google Scholar 

  11. Hoshino, G.: Global well-posedness and analytic smoothing effect for the dissipative nonlinear Schrödinger equations. J. Dyn. Differ. Equ. 31, 2339–2351 (2019)

    Article  Google Scholar 

  12. Hoshino, G., Ozawa, T.: Space-time analytic smoothing effect for the pseudoconformally invariant Schrödinger equations. Nonlinear Differ. Equ. Appl. 23, 3 (2016)

    Article  Google Scholar 

  13. Heather, H., Himonas, A.A., Petronilho, G.: Gevrey regularity in time for generalized KdV type equations. Contemp. Math. 400, 117–127 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Jin, G., Jin, Y., Li, C.: The initial value problem for nonlinear Schrödinger equations with a dissipative nonlinearity in one space dimension. J. Evol. Equ. 16, 983–995 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kato, K., Taniguchi, K.: Gevrey regularizing effect for nonlinear Schrödinger equations. Osaka J. Math. 33, 863–880 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Kato, T.: On nonlinear Schrödinger equations, II. \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)

    Article  MathSciNet  Google Scholar 

  17. Keel, M., Tao, T.: End point Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  Google Scholar 

  18. Kita, N., Shimomura, A.: Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data. J. Math. Soc. Jpn. 61, 39–64 (2009)

    Article  Google Scholar 

  19. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  20. Liskevich, V.A., Perelmuter, M.A.: Analyticity of submarkovian semigroups. Am. Math. Soc. 123, 1097–1104 (1995)

    MATH  Google Scholar 

  21. Nakamura, M., Ozawa, T.: Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev space. Rev. Math. Phys. 9, 397–410 (1997)

    Article  MathSciNet  Google Scholar 

  22. Nakamura, M., Ozawa, T.: Nonlinear Schrödinger equations in the Sobolev space of critical order. J. Funct. Anal. 155, 364–380 (1998)

    Article  MathSciNet  Google Scholar 

  23. Rudin, W.: Real and Complex Analysis, 3rd edn. Mc Graw-Hill, Mexico (1987)

    MATH  Google Scholar 

  24. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences., vol. 139. Springer, Berlin (1999)

    MATH  Google Scholar 

  25. Tesfahun, A.: On the radius of spatial analyticity for cubic nonlinear Schrödinger equations. J. Differ. Equ. 263, 7496–7512 (2017)

    Article  MathSciNet  Google Scholar 

  26. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19K14570. The author would like to thank anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Hoshino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, G. Space-time Gevrey smoothing effect for the dissipative nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 27, 32 (2020). https://doi.org/10.1007/s00030-020-00636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-00636-w

Keywords

Navigation