Skip to main content
Log in

Data science-driven analyses of drugs inducing hypertension as an adverse effect

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The utilization of approved medication is a requisite to combat certain diseases for health; however, the undesirable adverse effects (AEs) due to medication are generally unavoidable. Hypertension is one of such AEs resulting from approved medication in which blood pressure in the arteries gets elevated and is a risk factor for several diseases including heart and kidney failure. HTs are the approved drugs that can cause hypertension as an AE. Here, the goal of the study is to investigate the structural and functional diversities of HTs. In our quest to unravel the structural parameters of the HTs, a systematic analysis of the HTs having a different number and type of ring systems was conducted. The cellular component, molecular function and biological processes adopted by the gene products were analyzed. Moreover, our systematically done analysis suggests that all the target families are active in a common pathway, that is, nerve transmission. A comparison of the selected structural and functional aspect of HTs with anti-hypertensives suggests that HTs follow certain structural and functional features in spite of many possibilities. Our study provides a promising methodology that considers the influence of structural diversity of AE causing agents on a functional perspective for precursory clinical decision making. This could be extended to explore the structural and functional trends that are adopted by agents causing certain diseases or AEs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis PR, Karpa KD, Felix TM (2015) Adverse effects of common drugs: adults. FP Essent 436:23–30

    PubMed  Google Scholar 

  2. Cheng F, Kovács IA, Barabási A-L (2019) Network-based prediction of drug combinations. Nat Commun 10(1):1197

    PubMed  PubMed Central  Google Scholar 

  3. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432(7019):855–861

    CAS  PubMed  Google Scholar 

  4. Clemons PA, Wilson JA, Dančík V, Muller S, Carrinski HA, Wagner BK, Koehler AN, Schreiber SL (2011) Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc Natl Acad Sci USA 108(17):6817–6822

    CAS  PubMed  Google Scholar 

  5. Clemons PA, Bodycombe NE, Carrinski HA, Wilson JA, Shamji AF, Wagner BK, Koehler AN, Schreiber SL (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107(44):18787–18792

    CAS  PubMed  Google Scholar 

  6. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    PubMed  PubMed Central  Google Scholar 

  7. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting from the single- to the multitarget paradigm in drug discovery. Drug Discov Today 18:495–501

    PubMed  PubMed Central  Google Scholar 

  8. Medina-Franco JL (2012) Interrogating novel areas of chemical space for drug discovery using chemoinformatics. Drug Dev Res 73(7):430–438

    CAS  Google Scholar 

  9. Brown N, Jacoby E (2006) On scaffolds and hopping in medicinal chemistry. Mini-Rev Med Chem 6(11):1217–1229

    CAS  PubMed  Google Scholar 

  10. Shang J, Sun H, Liu H, Chen F, Tian S, Pan P, Li D, Kong D, Hou T (2017) Comparative analyses of structural features and scaffold diversity for purchasable compound libraries. J Cheminform 9:25–40

    PubMed  PubMed Central  Google Scholar 

  11. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14(3):347–361

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bemis GW, Murcko MA (1996) The properties of known drugs. J Med Chem 39(15):2887–2893

    CAS  PubMed  Google Scholar 

  13. Sharma AK, Srivastava GN, Roy A, Sharma VK (2017) ToxiM: a toxicity prediction tool for small molecules developed using machine learning and chemoinformatics approaches. Front Pharmacol 8:880–897

    PubMed  PubMed Central  Google Scholar 

  14. Limban C, Nuţă DC, Chiriţă C, Negreș S, Arsene AL, Goumenou M, Karakitsios SP, Tsatsakis AM, Sarigiannis DA (2018) The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol Rep 5:943–953

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alves V, Muratov E, Capuzzi S, Politi R, Low Y, Braga R, Zakharov AV, Sedykh A, Mokshyna E, Farag S et al (2016) Alarms about structural alerts. Green Chem 18(16):4348–4360

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beck KR, Thompson GR, Odermatt A (2019) Drug-induced endocrine blood pressure elevation. Pharmacol Res 154:104311

    PubMed  Google Scholar 

  17. Rubio-Guerra AF, Rodriguez-Lopez L, Vargas-Ayala G, Huerta-Ramirez S, Serna DC, Lozano-Nuevo JJ (2013) Depression increases the risk for uncontrolled hypertension. Exp Clin Cardiol 18(1):10–12

    PubMed  PubMed Central  Google Scholar 

  18. Li Z, Li Y, Chen L, Chen P, Hu Y (2015) Prevalence of depression in patients with hypertension. Medicine (Baltimore) 94(31):1317–1322

    Google Scholar 

  19. Ancker OV, Wehland M, Bauer J, Infanger M, Grimm D (2017) The adverse effect of hypertension in the treatment of thyroid cancer with multi-kinase inhibitors. Int J Mol Sci 18(3):625–743

    PubMed Central  Google Scholar 

  20. Barton M, Prossnitz ER, Meyer MR (2012) Testosterone and secondary hypertension: new pieces to the puzzle. Hypertension 59(6):1101–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van Amsterdam J, Opperhuizen A, Hartgens F (2010) Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol 57(1):117–123

    PubMed  Google Scholar 

  22. Chen S-Y, Fan S-Z, Chen L-K (2013) Ultralow dose combined spinal–epidural anesthesia for cesarean section in ritodrine-related severe pulmonary hypertension. Taiwan J Obstet Gynecol 52(4):617

    PubMed  Google Scholar 

  23. Spiekerkoetter E, Fabel H, Hoeper MM (2002) Effects of inhaled salbutamol in primary pulmonary hypertension. Eur Respir J 20(3):524–528

    CAS  PubMed  Google Scholar 

  24. Oskarsson A, Ullerås E, Ohlsson Andersson Å (2016) Acetaminophen Increases Aldosterone Secretion While Suppressing Cortisol and Androgens: a Possible Link to Increased Risk of Hypertension. Am J Hypertens 29(10):1158–1164

    CAS  PubMed  Google Scholar 

  25. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res 42:D1091–D1097

    CAS  PubMed  Google Scholar 

  26. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucl Acids Res 45(D1):D158–D169

    Google Scholar 

  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9

    Google Scholar 

  28. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890

    CAS  PubMed  Google Scholar 

  29. Siegel MG, Vieth M (2007) Drugs in other drugs: a new look at drugs as fragments. Drug Discov Today 12(1–2):71–79

    CAS  PubMed  Google Scholar 

  30. Dalvie D, Nair S, Kang P, Loi C-M (2010) Chapter 6: Influence of aromatic rings on ADME properties of drugs. In: metabolism, pharmacokinetics and toxicity of functional groups. The royal society of chemistry, pp 275–327

  31. Worley JD (1993) Heterocyclic chemistry, second edition (Gilchrist, T.L.). J Chem Educ 70(3):A89

  32. Adriani J, Yarbrough WM (1972) Drugs containing halogen atoms: toxicity and lack of toxicity. J Med Assoc Georgia 61(10):347–351

    CAS  Google Scholar 

  33. Hernandes MZ, Cavalcanti SMT, Moreira DRM, de Azevedo Junior WF, Leite ACL (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets 11(3):303–314

    CAS  PubMed  Google Scholar 

  34. Benarroch EE (2011) Na+, K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology 76(3):287–293

    PubMed  Google Scholar 

  35. Nikolic LM (2016) Regulation of Na+/K+-ATPase activity in the nervous system. In: Dhalla NS, Chakraborti S (eds) Regulation of membrane Na+-K+ATPase. Springer, Cham, pp 295–309

    Google Scholar 

  36. Shih JC, Chen K, Ridd MJ (1999) Role of MAO A and B in neurotransmitter metabolism and behavior. Pol J Pharmacol 51(1):25–29

    CAS  PubMed  Google Scholar 

  37. Kim Y-B, Kim Yoon S, Kim Woong B, Shen F-Y, Lee Seung W, Chung Hyun J, Kim Jeong S, Han Hee C, Colwell Christopher S, Kim Yang I (2013) GABAergic excitation of vasopressin neurons. Circ Res 113(12):1296–1307

    CAS  PubMed  Google Scholar 

  38. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI (2007) Mechanism of chloride interaction with neurotransmitter: sodium symporters. Nature 449:726

    CAS  PubMed  Google Scholar 

  39. Czapski GA, Czubowicz K, Strosznajder JB, Strosznajder RP (2016) The Lipoxygenases: their regulation and implication in alzheimer’s disease. Neurochem Res 41:243–257

    CAS  PubMed  Google Scholar 

  40. Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19(2):453–463

    CAS  PubMed  Google Scholar 

  41. Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44(1):257–283

    CAS  PubMed  Google Scholar 

  42. Olivares AM, Moreno-Ramos OA, Haider NB (2016) Role of nuclear receptors in central nervous system development and associated diseases. J Exp Neurosci 9(Suppl 2):93–121

    PubMed  PubMed Central  Google Scholar 

  43. Manville RW, Papanikolaou M, Abbott GW (2018) Direct neurotransmitter activation of voltage-gated potassium channels. Nat Commun 9(1):1847

    PubMed  PubMed Central  Google Scholar 

  44. Coceani F (1974) Prostaglandins and the central nervous system. JAMA Internal Med 133(1):119–129

    CAS  Google Scholar 

  45. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Siddiqi N, Shatat IF (2019) Antihypertensive agents: a long way to safe drug prescribing in children. Pediatr Nephrol 7:4314–4330

    Google Scholar 

  47. Roush GC, Sica DA (2016) Diuretics for hypertension: a review and update. Am J Hypertens 29(10):1130–1137

    CAS  PubMed  Google Scholar 

  48. Savitha MN, Suvilesh KN, Siddesha JM, Gowda M, Choudhury M, Velmurugan D, Umashankar M, Vishwanath BS (2019) Combinatorial inhibition of angiotensin converting enyme, neutral endopeptidase and aminopeptidase n by n-methylated peptides alleviates blood pressure and fibrosis in rat model of dexamethasone-induced hypertension. Peptides 123:170180

    PubMed  Google Scholar 

  49. Xue H, Lu Z, Tang WL, Pang LW, Wang GM, Wong GWK, Wright JM (2015) First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension. Cochrane Database Syst Rev 1:CD008170

    PubMed  Google Scholar 

  50. Li C, Yan X, Wu D, Zhang K, Liang X, Pan Y, Zhou Y, Chen F, Chen X, Yang S et al (2019) Vaccine targeted alpha 1d-adrenergic receptor for hypertension. Hypertension 74(6):1551–1562

    CAS  PubMed  Google Scholar 

  51. Zablotskaya A, Segal I, Geronikaki A, Shestakova I, Nikolajeva V, Makarenkova G (2017) N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action. Pharmacol Rep 69(3):575–581

    CAS  PubMed  Google Scholar 

  52. Solomon VR, Lee H (2011) Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem 18(10):1488–1508

    CAS  PubMed  Google Scholar 

  53. Mishra AP, Bajpai A, Rai AK (2019) 1,4-Dihydropyridine: a dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev Med Chem 19(15):1219–1254

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RS thanks Department of Biotechnology, BioCARe, New Delhi, for the financial assistance through DBT Grant (BT/PR18249/BIC/101/390/2016), IICT manuscript number IICT/Pubs./2019/277. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Special thanks to Dr. Kavya, Indian Institute of Science, for the critical review and discussions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RS conceived the idea, designed, performed, analyzed and drafted the manuscript.

Corresponding author

Correspondence to Reetu Sharma.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R. Data science-driven analyses of drugs inducing hypertension as an adverse effect. Mol Divers 25, 801–810 (2021). https://doi.org/10.1007/s11030-020-10059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10059-5

Keywords

Navigation