Skip to main content
Log in

PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor cells increase glucose metabolism through glycolysis and pentose phosphate pathways to meet the bioenergetic and biosynthetic demands of rapid cell proliferation. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are key regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent activator of glycolysis. Previous studies have reported the co-expression of PFKFB isozymes, as well as the mRNA splice variants of particular PFKFB isozymes, suggesting non-redundant functions. Majority of the evidence demonstrating a requirement for PFKFB activity in increased glycolysis and oncogenic properties in tumor cells comes from studies on PFKFB3 and PFKFB4 isozymes. In this study, we show that the PFKFB2 isozyme is expressed in tumor cell lines of various origin, overexpressed and localizes to the nucleus in pancreatic adenocarcinoma, relative to normal pancreatic tissue. We then demonstrate the differential intracellular localization of two PFKFB2 mRNA splice variants and that, when ectopically expressed, cytoplasmically localized mRNA splice variant causes a greater increase in F2,6BP which coincides with an increased glucose uptake, as compared with the mRNA splice variant localizing to the nucleus. We then show that PFKFB2 expression is required for steady-state F2,6BP levels, glycolytic activity, and proliferation of pancreatic adenocarcinoma cells. In conclusion, this study may provide a rationale for detailed investigation of PFKFB2’s requirement for the glycolytic and oncogenic phenotype of pancreatic adenocarcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

F6P:

Fructose-6-phosphate

F1,6BP:

Fructose-1,6-bisphosphate

F2,6BP:

Fructose-2,6-bisphosphate

PFK1:

6-Phosphofructo-1-kinase

NADPH:

Nicotinamide adenine dinucleotide phosphate

PFKFB:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase

PPi-PFK:

Pyrophosphate-dependent phosphofructokinase

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670. https://doi.org/10.1016/j.cell.2012.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. https://doi.org/10.1126/sciadv.1600200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiaradonna F, Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Stephanopoulos G, Alberghina L (2011) Oncogenic K-ras decouples glucose and glutamine metabolism to support cancer cell growth. FEBS J 278:199–199

    Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma PK, Bhardwaj R, Dwarakanath BS, Varshney R (2010) Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett 295:154–166. https://doi.org/10.1016/j.canlet.2010.02.021

    Article  CAS  PubMed  Google Scholar 

  7. Kim J (2018) Regulation of immune cell functions by metabolic reprogramming. J Immunol Res 2018:8605471. https://doi.org/10.1155/2018/8605471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X, Yu X, Dai D, Song X, Xu W (2016) The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget 7:23141–23155. https://doi.org/10.18632/oncotarget.8153

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pertega-Gomes N, Baltazar F (2014) Lactate transporters in the context of prostate cancer metabolism: what do we know? Int J Mol Sci 15:18333–18348. https://doi.org/10.3390/ijms151018333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, White E, Toettcher JE, Rabinowitz JD (2018) Four key steps control glycolytic flux in mammalian cells. Cell Syst 7(49–62):e8. https://doi.org/10.1016/j.cels.2018.06.003

    Article  CAS  Google Scholar 

  11. Bartrons R, Simon-Molas H, Rodriguez-Garcia A, Castano E, Navarro-Sabate A, Manzano A, Martinez-Outschoorn UE (2018) Fructose 2,6-bisphosphate in cancer cell metabolism. Front Oncol 8:331. https://doi.org/10.3389/Fonc.2018.00331

    Article  PubMed  PubMed Central  Google Scholar 

  12. Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J (2006) Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25:7225–7234. https://doi.org/10.1038/sj.onc.1209709

    Article  CAS  PubMed  Google Scholar 

  13. Yalcin A, Solakoglu TH, Ozcan SC, Guzel S, Peker S, Celikler S, Balaban BD, Sevinc E, Gurpinar Y, Chesney JA (2017) 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for transforming growth factor beta1-enhanced invasion of Panc1 cells in vitro. Biochem Biophys Res Commun 484:687–693. https://doi.org/10.1016/j.bbrc.2017.01.178

    Article  CAS  PubMed  Google Scholar 

  14. Chesney J (2006) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care 9:535–539. https://doi.org/10.1097/01.mco.0000241661.15514.fb

    Article  CAS  PubMed  Google Scholar 

  15. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26:30–35

    Article  CAS  PubMed  Google Scholar 

  16. Imbert-Fernandez Y, Clem BF, O'Neal J, Kerr DA, Spaulding R, Lanceta L, Clem AL, Telang S, Chesney J (2014) Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J Biol Chem. https://doi.org/10.1074/jbc.M113.529990

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  18. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J (2009) Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 284:24223–24232. https://doi.org/10.1074/jbc.M109.016816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klarer AC, O'Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, Clem B, Chesney J, Telang S (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2:2. https://doi.org/10.1186/2049-3002-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120. https://doi.org/10.1158/1535-7163.MCT-07-0482

    Article  CAS  PubMed  Google Scholar 

  21. Helm J, Coppola D, Ganapathy V, Lloyd M, Centeno BA, Chen DT, Malafa MP, Park JY (2012) SLC5A8 nuclear translocation and loss of expression are associated with poor outcome in pancreatic ductal adenocarcinoma. Pancreas 41:904–909. https://doi.org/10.1097/MPA.0b013e31823f429f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129:191–195. https://doi.org/10.1111/j.1432-1033.1982.tb07039.x

    Article  PubMed  Google Scholar 

  23. Muchut RJ, Piattoni CV, Margarit E, Tripodi KEJ, Podestá FE, Iglesias AA (2019) Heterologous expression and kinetic characterization of the α, β and αβ blend of the PPi-dependent phosphofructokinase from Citrus sinensis. Plant Sci 280:348–354. https://doi.org/10.1016/j.plantsci.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  24. Zscharnack K, Kessler R, Bleichert F, Warnke JP, Eschrich K (2009) The PFKFB3 splice variant UBI2K4 is downregulated in high-grade astrocytomas and impedes the growth of U87 glioblastoma cells. Neuropathol Appl Neurobiol 35:566–578. https://doi.org/10.1111/j.1365-2990.2009.01027.x

    Article  CAS  PubMed  Google Scholar 

  25. Blum R, Kloog Y (2014) Metabolism addiction in pancreatic cancer. Cell Death Dis 5:e1065. https://doi.org/10.1038/cddis.2014.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang F, Liu H, Hu L, Liu Y, Duan Y, Cui R, Tian W (2018) The Warburg effect in human pancreatic cancer cells triggers cachexia in athymic mice carrying the cancer cells. BMC Cancer 18:360–360. https://doi.org/10.1186/s12885-018-4271-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boukouris AE, Zervopoulos SD, Michelakis ED (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci 41:712–730. https://doi.org/10.1016/j.tibs.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  28. Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S (2011) Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci USA 108:5278–5283. https://doi.org/10.1073/pnas.1102247108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H (2009) Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284:478–485. https://doi.org/10.1074/jbc.M807017200

    Article  CAS  PubMed  Google Scholar 

  30. Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW, Park SW, Kim KS (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 433:225–233. https://doi.org/10.1042/BJ20101104

    Article  CAS  PubMed  Google Scholar 

  31. Novellasdemunt L, Tato I, Navarro-Sabate A, Ruiz-Meana M, Mendez-Lucas A, Perales JC, Garcia-Dorado D, Ventura F, Bartrons R, Rosa JL (2013) Akt-dependent activation of the heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) isoenzyme by amino acids. J Biol Chem 288:10640–10651. https://doi.org/10.1074/jbc.M113.455998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cordero-Espinoza L, Hagen T (2013) Increased concentrations of fructose 2,6-bisphosphate contribute to the Warburg effect in phosphatase and tensin homolog (PTEN)-deficient cells. J Biol Chem 288:36020–36028. https://doi.org/10.1074/jbc.M113.510289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du JY, Wang LF, Wang Q, Yu LD (2015) miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep 33:1890–1898. https://doi.org/10.3892/or.2015.3797

    Article  CAS  PubMed  Google Scholar 

  34. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428. https://doi.org/10.1016/j.ccr.2009.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minchenko OH, Opentanova IL, Ogura T, Minchenko DO, Komisarenko SV, Caro J, Esumi H (2005) Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochim Pol 52:881–888

    Article  CAS  PubMed  Google Scholar 

  36. Houddane A, Bultot L, Novellasdemunt L, Johanns M, Gueuning MA, Vertommen D, Coulie PG, Bartrons R, Hue L, Rider MH (2017) Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cell Signal 34:23–37. https://doi.org/10.1016/j.cellsig.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  37. Zhao SJ, Shen YF, Li Q, He YJ, Zhang YK, Hu LP, Jiang YQ, Xu NW, Wang YJ, Li J, Wang YH, Liu F, Zhang R, Yin GY, Tang JH, Zhou D, Zhang ZG (2018) SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway. Cell Death Dis 9:390. https://doi.org/10.1038/s41419-018-0419-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu H, Chen K, Wang L, Zeng X, Huang Z, Li M, Dong P, Chen X (2019) miR-613 inhibits Warburg effect in gastric cancer by targeting PFKFB2. Biochem Biophys Res Commun 515:37–43. https://doi.org/10.1016/j.bbrc.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  39. Houles T, Gravel SP, Lavoie G, Shin S, Savall M, Meant A, Grondin B, Gaboury L, Yoon SO, St-Pierre J, Roux PP (2018) RSK regulates PFK-2 activity to promote metabolic rewiring in melanoma. Cancer Res 78:2191–2204. https://doi.org/10.1158/0008-5472.CAN-17-2215

    Article  CAS  PubMed  Google Scholar 

  40. Minchenko OH, Ochiai A, Opentanova IL, Ogura T, Minchenko DO, Caro J, Komisarenko SV, Esumi H (2005) Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie 87:1005–1010. https://doi.org/10.1016/j.biochi.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  41. Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A, Esumi H (2014) Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol 20:13705–13717. https://doi.org/10.3748/wjg.v20.i38.13705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia W, Zhao X, Zhao L, Yan H, Li J, Yang H, Huang G, Liu J (2018) Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4. Oncogene 37:1685–1698. https://doi.org/10.1038/s41388-017-0072-4

    Article  CAS  PubMed  Google Scholar 

  43. Li F-L, Liu J-P, Bao R-X, Yan G, Feng X, Xu Y-P, Sun Y-P, Yan W, Ling Z-Q, Xiong Y, Guan K-L, Yuan H-X (2018) Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun 9(1):508. https://doi.org/10.1038/s41467-018-02950-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L (2004) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 381:561–579. https://doi.org/10.1042/BJ20040752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA 2nd, Klarer AC, Redman R, Miller DM, Trent JO, Telang S, Chesney J (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12:1461–1470. https://doi.org/10.1158/1535-7163.MCT-13-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, Zamboni N, Schulze A (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2:328–343. https://doi.org/10.1158/2159-8290.CD-11-0234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK#114Z496). SCO was the recipient of a predoctoral training grant from TUBITAK (#2214).

Author information

Authors and Affiliations

Authors

Contributions

SCO and AY designed the experiments; SCO, AS, THA, SG, YG and ALC carried out cell culture, gene expression and protein analyses; SCO and AY conducted immunofluorescence analyses; AA and SG performed immunohistochemistry analyses; RJM and AAI isolated and tested PPi-PFK activity; SCO, THA and AY performed F2,6BP analyses; SCO and YIF carried out glucose uptake and glycolytic activity analyses; JAC revised the manuscript critically; AY and SCO wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abdullah Yalcin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 6010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, S.C., Sarioglu, A., Altunok, T.H. et al. PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells. Mol Cell Biochem 470, 115–129 (2020). https://doi.org/10.1007/s11010-020-03751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03751-5

Keywords

Navigation