Skip to main content
Log in

Kinetic Evolution of Chalcopyrite Thermal Degradation under Oxidative Environment

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The oxidative degradation kinetics of chalcopyrite have been studied by thermogravimetric analysis (TGA). The obtained data are necessary for the kinetic description of the flash fusion process, which can contribute to the optimization of the smelting process in copper extractive metallurgy. Activation energy (Ea) evolutions of the involved processes have been determined by several isoconversional methods; in this sense, the chalcopyrite oxidation processes could be adequately described, among studied models (E1641–16, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman), by the Kissinger–Akahira–Sunose kinetic model. Using this method, Ea and A values are found to be very dependent on the conversion. Under lower conversion levels, higher Ea and A values have been calculated with respect to that found for medium and higher conversion levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper. Elsevier, Amsterdam. https://doi.org/10.1016/C2010-0-64841-3

    Book  Google Scholar 

  2. Feng Q, Wen S, Bai X, Chang W, Cui C, Zhao W (2019) Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Min Eng. https://doi.org/10.1016/j.mineng.2019.03.021

  3. Zhao W, Liu D, Feng Q, Wen S, Chang W (2019) DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (1 0 1) surface. Min Eng. https://doi.org/10.1016/j.mineng.2019.105846

  4. Huang Z, Cheng C, Liu Z, Zeng H, Feng B, Zhong H, Fu W (2019) Utilization of a new gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.02.251

  5. Huang Z, Cheng C, Liu Z, Feng B, Hu Y, Luo W, Fu W (2019) Highly efficient potassium fertilizer production by using a gemini surfactant. Green Chem. https://doi.org/10.1039/C8GC03487G

  6. Huang Z, Cheng C, Liu Z, Luo W, Zhong H, He G, Fu W (2019) Gemini surfactant: a novel flotation collector for harvesting of microalgae by froth flotation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.12.106

  7. Yazawa A, Kameda A (1953) Copper smelting. I. Partial liquidus diagram for FeSFeO-SiO2 system. Tech. Rep. Tohoku Univ 16:40–58

    Google Scholar 

  8. Sharma RC, Chang YA (1980) A thermodynamic analysis of the copper sulfur system. Metall Transac. https://doi.org/10.1007/BF02670137

  9. Dunn JG, Ginting A, O’Connor BH (1997) Quantitative determination of phases presents in oxidised chalcocite. J Therm Anal. https://doi.org/10.1007/bf01979548

  10. Pérez-Fontes SE, Pérez-Tello M, Prieto-López LO, Brown F, Castillón-Barraza F (2007) Thermoanalytical study on the oxidation of sulfide minerals at high temperatures. J Min Metall Explor. https://doi.org/10.1007/bf03403377

  11. Parra R, Parada R, Rodríguez M (2003) New approach for the optimization of copper concentrates flash combustion by the control of blends. Invited Lecture. Yazawa International Symposium on Metallurgical and Materials Processing: Principles and Technologies, TMS Annual Meeting and Exhibition, San Diego, 2–6 March

  12. Araya RMP (2015) Combustión de concentrados de cobre en hornos de fusión flash. Ph D. Thesis, Universidad de Oviedo, Spain

  13. Kim YH, Themelis NJ (1986) Effect of phase transformation and particle fragmentation on the flash reaction of complex metal sulfides. In: Gaskell DR, Hager JP, Hoffmann JE (eds) The reinhardt schuhmann international symposium on innovative technology and reactor design in extraction metallurgy. ASM International, Novelty, OH, pp 349–369

    Google Scholar 

  14. Jorgensen FRA, Koh PTL (2001) Combustion in flash smelting furnaces. JOM. https://doi.org/10.1007/s11837-001-0201-x

  15. Parra Sánchez VR (2015) Estudio experimental y modelación matemática de la fragmentación de partículas sulfurosas de concentrado de cobre en un reactor de flujo laminar. Ph D Thesis. Universidad de Sonora, Mexico

  16. ASTM Test Method E-1641. 1994. Standard test method for decomposition kinetics by thermogravimetry. ASTM Book of Standards 14.02. American Society for Testing and Materials, West Conshohocken, PA, pp 1042–1046

  17. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. https://doi.org/10.1246/bcsj.38.1881

  18. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Phys. https://doi.org/10.1002/pol.1966.110040504

  19. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. https://doi.org/10.6028/jres.057.026

  20. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol 16:22–31

    Google Scholar 

  21. Friedman HL (1960) Thermal degradation of plastics. I. the kinetics of polymer chain degradation. J Polym Sci A. https://doi.org/10.1002/pol.1960.1204514511

  22. Živković ZD, Mitevska N, Savović V (1996) Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process. Thermochim Acta. https://doi.org/10.1016/0040-6031(96)02883-3

  23. Piñeyro R, Pérez M, Parra R (2012) Estudio termoanalítico de la oxidación de partículas de concentrado de cobre. XXI Congreso Internacional Metalurgia Extractiva México, 16–18 May, 1:192–205

  24. Dunn JG (1997) The oxidation of sulphide minerals. Thermochim Acta. https://doi.org/10.1016/s0040-6031(96)03132-2

  25. Sonobe T, Worasuwannarak N (2008) Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. https://doi.org/10.1016/j.fuel.2007.05.004

  26. Brown ME (1998) Handbook of thermal analysis and calorimetry: principles and practice. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

This study received financial support from Research and Transfer Policy Strategy of the University of Huelva (Call for Industrial Doctorate grants at the University of Huelva) and from the Atlantic Copper company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Díaz.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, M., Moreno-Ventas, I., Raposo, I. et al. Kinetic Evolution of Chalcopyrite Thermal Degradation under Oxidative Environment. Mining, Metallurgy & Exploration 37, 923–932 (2020). https://doi.org/10.1007/s42461-020-00204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00204-x

Keywords

Navigation