Skip to main content
Log in

An overview of molecular extractants in room temperature ionic liquids and task specific ionic liquids for the partitioning of actinides/lanthanides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Solvent extraction process is applied for the extraction of actinides/lanthanides from waste water produced in nuclear industry. Various extractants have been developed for this purpose. More recently separation scientists have shown extensive interest toward ionic liquids (ILs) due to their unique properties. ILs have extensively been used as extraction medium for the recovery of rare earths and actinides or modified to task specific ionic liquids (TSILs); where ionic liquid part has been covalently attached to the extractants. This article highlights some conventional extractants, the use of these extractants in IL medium and the development of TSILs. The effect of medium on extraction efficiency has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Baisden PA, Choppin GR (2007) Nuclear waste manage and the nuclear fuel cycle. In: Nagyl S (ed) Radiochemistry and nuclear chemistry. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford

    Google Scholar 

  2. Paiva AP, Malik P (2004) Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J Radioanal Nucl Chem 261(2):485–496

    Article  CAS  Google Scholar 

  3. Salvatores M (2005) Nuclear fuel cycle strategies including partitioning and transmutation. Nucl Eng Des 235(7):805–816

    Article  CAS  Google Scholar 

  4. Pascal CC, Tiphine M, Krivtchik G, Freynet D, Cany C, Eschbach R, Chabert C (2015) COSI6: a tool for nuclear transition scenario studies and application to SFR deployment scenarios with minor actinide transmutation. Nucl Technol 192(2):91–110

    Article  Google Scholar 

  5. Implications of Partitioning and Transmutation in Radioactive Waste Manage, Technical Report Series, IAEA, Vienna, 20041-127

  6. Ikeda K, Koyama S, Kurata M, Morita Y, Tsujimoto K, Minato K (2014) Technology readiness assessment of partitioning and transmutation in Japan and issues toward closed fuel cycle. Prog Nucl Energy 74:242–263

    Article  CAS  Google Scholar 

  7. Diamand RME (1977) Environmental chemistry. Plenum Press, New York

    Google Scholar 

  8. Choppin GR, Nash KL (1995) Actinide separation science. Radiochim Acta 70(1):225–236

    Google Scholar 

  9. Kuhn AT (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  10. Ortiz EP (1986) Kinetics of metal extraction: rate controlling steps and experimental techniques used to establish a design equation. Ion Exch Sci Technol 559–574

  11. Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62:933–967

    Article  CAS  Google Scholar 

  12. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356

    Article  CAS  PubMed  Google Scholar 

  13. McKibben JM (1984) Chemistry of the purex process. Radiochim Act 36:3–16

    CAS  Google Scholar 

  14. Horwitz EP, Schulz WW (1991) The truex process: a vital tool for disposal of US defense nuclear waste. New separation chemistry techniques for radioactive waste and other specific applications 21

  15. Horwitz EP, Kalina DC, Diamond H, Vandegrift GF, Schulz WW (1985) The truex process-a process for the extraction of the tkansuranic elements erom nitric ac in wastes utilizing modified purex solvent. Solv Extr Ion Exch 3:75–109

    Article  CAS  Google Scholar 

  16. Zhu Y, Jiao R (1994) Chinese experience in the removal of actinides from highly active waste by trialkylphosphine-oxide extraction. Nucl Technol 108:361–369

    Article  CAS  Google Scholar 

  17. Cuillerdier C, Musikas C, Hoel P, Nigond L, Vitart X (1991) Malonamides as new extractants for nuclear waste solutions. Sep Sci Technol 26:1229–1244

    Article  CAS  Google Scholar 

  18. Morita Y, Glatz JP, Kubota M, Koch L, Pagliosa G, Roemer K, Nicholl A (1996) Actinide partitioning from HLW in a continuous DIDPA extraction process by means of centrifugal extractors. Solv Extr Ion Exch 14(3):385–400

    Article  CAS  Google Scholar 

  19. Modolo G, Seekamp S, Vijgen H, Scharf K, Baron P (2001) Recent developments in the ALINA process for An(III)/Ln(III) group separation during the partitioning of minor actinides. In: Proceedings of the 8th international conference on radioactive waste manage and environmental remediation. ICEM 01, Bruges, Belgium, Sept. 30–Oct. 4, 2001, ASME, 2001

  20. Liljenzin JO, Persson G, Svantesson I, Wlngefors S (1984) The CTH-process for HLLW treatment. Radiochim Acta 35(3):163–172

    Article  Google Scholar 

  21. Magnussona D, Geista A, Malmbeckb R, Modoloc G, Wilden A (2012) Flow-Sheet design for an innovative SANEX process using TODGA and SO3-Ph-BTP. J Procedia Chem 7:245–250

    Article  CAS  Google Scholar 

  22. Tachimori S, Sasaki Y, Suzuki SI (2002) Modification of TODGA-n-dodecane solvent with a monoamide for high loading of lanthanides (III) and actinides (III). Solv Extr Ion Exch 20(6):687–699

    Article  CAS  Google Scholar 

  23. Yaita T, Herlinger AW, Thiyagarajan P, Jensen MP (2004) Influence of extractant aggregation on the extraction of trivalent f-element cations by a tetraalkyldiglycolamide. Solv Extr Ion Exch 22(4):553–571

    Article  CAS  Google Scholar 

  24. Narita H, Yaita T, Tachimori S (2004) Extraction of lanthanides with N, N′-dimethyl-N, N′-diphenyl-malonamide and-3, 6-dioxaoctanediamide. Solv Extr Ion Exch 22(2):135–145

    Article  CAS  Google Scholar 

  25. Suzuki H, Sasaki Y, Sugo Y, Apichaibukol A, Kimura T (2004) Extraction and separation of Am(III) and Sr (II) by N, N, N, N-tetraoctyl-3-oxapentanediamide (TODGA). Radiochim Acta 92(8):463–466

    Article  CAS  Google Scholar 

  26. Sasaki Y, Rapold P, Arisaka M, Hirata M, Kimura T, Hill C, Cote G (2007) An additional insight into the correlation between the distribution ratios and the aqueous acidity of the TODGA system. Solv Extr Ion Exch 25(2):187–204

    Article  CAS  Google Scholar 

  27. Iqbal M, Huskensa J, Verbooma W, Sypulab M, Modolo G (2010) Synthesis and Am/Eu extraction of novel TODGA derivatives. Supramol Chem 22(11–12):827–837

    Article  CAS  Google Scholar 

  28. Mowafy EA, Aly HF (2007) Synthesis of some N, N, N′, N′-Tetraalkyl-3-Oxa-Pentane-1, 5-diamide and their applications in solvent extraction. Solv Extr Ion Exch 25(2):205–224

    Article  CAS  Google Scholar 

  29. Matloka K, Gelis A, Regalbuto M, Vandegrift G, Scott MJ (2005) Highly efficient binding of trivalent f-elements from acidic media with a C 3-symmetric tripodal ligand containing diglycolamide arms. Dalton Trans 23:3719–3721

    Article  CAS  Google Scholar 

  30. Matloka K, Gelis A, Regalbuto M, Vandegrift G, Scott MJ (2006) C 3-symmetric tripodalthio/diglycolamide-based ligands for trivalent f-element separations. Sep Sci Technol 41(10):2129–2146

    Article  CAS  Google Scholar 

  31. Jańczewski D, Reinhoudt DN, Verboom W, Hill C, Allignol C, Duchesne MT (2008) Tripodaldiglycolamides as highly efficient extractants for f-elements. New J Chem 32(3):490–495

    Article  Google Scholar 

  32. Murillo MT, Espartero AG, Sánchez-Quesada J, de Mendoza J, Prados P (2009) Synthesis of pre-organized bisdiglycolamides (BisDGA) and study of their extraction properties for actinides (III) and lanthanides (III). Solv Extr Ion Exch 27(2):107–131

    Article  CAS  Google Scholar 

  33. Mohapatra PK, Iqbal M, Raut DR, Huskens J, Verboom W (2012) Unusual transport behaviour of actinide ions with a novel calix[4]arene-tetra-diglycolamide (C4DGA) extractant as the carrier. J Memb Sci 411:64–72

    Article  CAS  Google Scholar 

  34. Mohapatra PK, Iqbal M, Raut DR, Verboom W, Huskens J, Godbole SV (2012) Complexation of novel diglycolamide functionalized calix [4] arenes: unusual extraction behaviour, transport, and fluorescence studies. Dalton Trans 41(2):360–363

    Article  CAS  PubMed  Google Scholar 

  35. Brahmmananda Rao CVS, Srinivasan TG, Vasudeva Rao PR (2007) Studies on the extraction of actinides by diamylamylphosphonate. Solv Extr Ion Exch 25(6):771–789

    Article  CAS  Google Scholar 

  36. Rozen AM, Volk VI, Vakhrushin A, Zakharkin BS, Kartasheva NA, Krupnov BV, Nikolotova ZI (1999) Extractants for exhaustive recovery of TPEs from radiochemical production waste. Radiochemistry 41(3):215–221

    CAS  Google Scholar 

  37. Sasaki Y, Umetani S (2006) Comparison of four bidentate phosphoric and diamidecompounds for the extractability of actinides. J Nucl Sci Technol 43(7):794–797

    Article  CAS  Google Scholar 

  38. Kulyako YM, Malikov DA, Chmutova MK, Litvina MN, Myasoedov BF (1998) New method for actinide and rare-earth element recovery by diphenyl [dibutylcarbamoylmethyl] phosphine oxide from nitric acid solutions. J Alloys Compd 271:760–764

    Article  Google Scholar 

  39. Kulyako Y, Malikov D, Trofimov T, Chmutova M, Myasoedov B (2002) Extraction of actinides and lanthanides with diphenyl[dibutylcarbamoylmethyl]-phosphine oxide in the absence of a solvent. J Nucl Sci Technol 39:302–305

    Article  Google Scholar 

  40. Kolarik ZJ, Philip Horwitz E (1988) Extraction of neptunium and plutonium nitrates with N-octyl (phenyl)-N, N-diisobutyl-carbamoylmethylphosphine oxide. Solv Extr Ion Exch 6(2):247–263

    Article  CAS  Google Scholar 

  41. Nagasaki S, Kinoshita K, Wisnubroto DS, Enokida Y, Suzuki A (1992) Oxidation of pentavalent neptunium by nitrous acid in CMPO-TBP-n-dodecane organic solution. J Nucl Sci Technol 29(7):671–676

    Article  CAS  Google Scholar 

  42. Musikas C (1988) Potentiality of nonorganophosphorusextractant in chemical separations of actinides. Sep Sci Technol 23:1211–1226

    Article  CAS  Google Scholar 

  43. Mahajan GR, Prabhu D, Manchanda VK, Badheka LP Substituted malonamides as extractants for partitioning of actinides from nuclear waste solutions. Waste Manage 18(2): 125-133

  44. Modolo G, Vijgen H, Serrano-Purroy D, Christiansen B, Malmbeck R, Sorel C, Baron P (2007) DIAMEX counter-current extraction process for recovery of trivalent actinides

  45. Lumetta GJ, Rapko BM, Hay BP, Garza PA, Hutchison JE, Gilbertson RD (2003) A novel bicyclic diamide with high binding affinity for trivalent f-block elements. Solv Extr Ion Exch 21(1):29–39

    Article  CAS  Google Scholar 

  46. Weaver B, Kappelmann FA (1968) Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. J Inorg Nucl Chem 30(1):263–272

    Article  CAS  Google Scholar 

  47. Musikas C (1985) Actinide-lanthanide group separation using sulfur and nitrogen donor extractants. Actinide/lanthanide separations. In: Proceedings of an international symposium. World Scientific Publishing, Singapore

  48. Jarvinen GD, Barrans RE, Schroeder NC, Wade KL, Jones MM, Smith BF, Mills JL, Howard G, Freiser H, Muralidharan S (1995) Separation of f Elements. Plenum Press, New York, p 43

    Book  Google Scholar 

  49. Klaehn JR, Peterman DR, Harrup MK, Tillotson RD, Luther TA, Law JD, Daniels LM (2008) Synthesis of symmetric dithiophosphinic acids for “minor actinide” extraction. Inorg Chim Acta 361(8):2522–2532

    Article  CAS  Google Scholar 

  50. Harrup MK, Peterman DR, Greenhalgh MR, Luther TA and Klaehn J (2008) Comparison of aromatic dithiophosphinic and phosphinic acid derivatives for minor actinide extraction. Res Soc Symp Proc 1104

  51. Peterman DR, Martin LR, Klaehn JR, Harrup MK, Greenhalgh MR, Luther TA (2009) Selective separation of minor actinides and lanthanides using armaticdithiophosphinic and phosphinic acid derivatives. J Radioanal Nucl Chem 282(2):527–531

    Article  CAS  Google Scholar 

  52. Lewis FW, Hudson MJ, Harwood LM (2011) Development of highly selective ligands for separations of actinides from lanthanides in the nuclear fuel cycle. Synlett 18:2609–2632

    Google Scholar 

  53. Kolarik Z, Müllich U, Gassner F (1999) Selective extraction of Am(III) over Eu(III) by 2, 6-ditriazolyl-and 2, 6-ditriazinylpyridines. Solv Extr Ion Exch 17(1):23–32

    Article  CAS  Google Scholar 

  54. Hudson MJ, Boucher CE, Braekers D, Desreux JF, Drew MG, Foreman MRSJ, Youngs TG (2006) New bis (triazinyl) pyridines for selective extraction of americium (III). New J Chem 30(8):1171–1183

    Article  CAS  Google Scholar 

  55. Drew MG, Foreman MR, Hill C, Hudson MJ, Madic C (2005) 6, 6′-bis-(5, 6-diethyl-[1, 2, 4] triazin-3-yl)-2, 2′-bipyridyl the first example of a new class of quadridentate heterocyclic extraction reagents for the separation of americium (III) and europium (III). Inorg Chem Commun 8(3):239–241

    Article  CAS  Google Scholar 

  56. Ekberg C, Aneheim E, Fermvik A, Foreman M, Löfström-Engdahl E, Retegan T, Spendlikova I (2010) Thermodynamics of dissolution for bis (triazine) − bipyridine-class ligands in different diluents and its reflection on extraction. J Chem Eng Data 55(11):5133–5137

    Article  CAS  Google Scholar 

  57. Harwood LM, Lewis FW, Hudson MJ, John J, Distler P (2011) The separation of americium (III) from europium (III) by two new 6, 6′-bistriazinyl-2, 2′-bipyridines in different diluents. Solv Extr Ion Exch 29(4):551–576

    Article  CAS  Google Scholar 

  58. Lewis FW, Harwood LM, Hudson MJ, Drew MG, Desreux JF, Vidick G, Vu TH (2011) Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J Am Chem Soc 133(33):13093–13102

    Article  CAS  PubMed  Google Scholar 

  59. Lewis FW, Harwood LM, Hudson MJ, Drew MG, Modolo G, Sypula M, Vidick G (2010) Interaction of 6, 6′′-bis (5, 5, 8, 8-tetramethyl-5, 6, 7, 8-tetrahydro-1, 2, 4-benzotriazin-3-yl)-2, 2′: 6′, 2′′-terpyridine (CyMe4-BTTP) with some trivalent ions such as lanthanide (iii) ions and americium (iii). Dalton Trans 39(21):5172–5182

    Article  CAS  PubMed  Google Scholar 

  60. Marie C, Miguirditchian M, Guillaneux D, Bisson J, Pipelier M, Dubreuil D (2011) New bitopic ligands for the group actinide separation. Solv Extr Ion Exch 29(2):292–315

    Article  CAS  Google Scholar 

  61. Wasserscheid P, Welton T (2007) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  62. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556(1):38–45

    Article  CAS  PubMed  Google Scholar 

  63. Ohno H (2005) Electrochemical aspects of ionic liquids. Wiley-Interscience, New York

    Book  Google Scholar 

  64. Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22(11):1196–1221

    Article  CAS  PubMed  Google Scholar 

  65. Shimojo K, Kurahashi K, Naganawa H (2008) Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans 37:5083–5088

    Article  CAS  Google Scholar 

  66. Wei GT, Yang Z, Chen CJ (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488(2):183–192

    Article  CAS  Google Scholar 

  67. Stepinski DC, Jensen MP, Dzielawa JA, Dietz ML (2005) Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids. Green Chem 7(3):151–158

    Article  CAS  Google Scholar 

  68. Giridhar P, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2005) Extraction of uranium (VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent. J Radioanal Nucl Chem 265(1):31–38

    Article  CAS  Google Scholar 

  69. Panja S, Tripathi S, Dhami P, Gandhi P (2015) Solvent extraction of Pu(IV) using TBP : a comparative study of n-dodecane and a room temperature ionic liquid. Sep Sci Technol 50(15):2335–2341

    CAS  Google Scholar 

  70. Rout A, Venkatesan KA, Srinivasan TG, Rao PV (2009) Extraction of americium (III) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent. Radiochim Acta 97(12):719–725

    Article  CAS  Google Scholar 

  71. Visser AE, Rogers RD (2003) Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. Sol State Chem 171(1):109–113

    Article  CAS  Google Scholar 

  72. Nakashima K, Kubota F, Maruyama T, Goto M (2005) Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind Eng Chem Res 44(12):4368–4372

    Article  CAS  Google Scholar 

  73. Nakashima K, Kubota F, Maruyama T, Goto M (2003) Ionic liquids as a novel solvent for lanthanide extraction. Anal Sci 19(8):1097–1098

    Article  CAS  PubMed  Google Scholar 

  74. Pribylova GA (2011) Influence of ionic liquids on actinides extraction by diphenyl (dibutyl) carbamoylmethylphosphine oxide in different solvents from nitric acid solution. J Radioanal Nucl Chem 288(3):693–697

    Article  CAS  Google Scholar 

  75. Turanov AN, Karandashev VK, Baulin VE (2008) Extraction of rare-earth elements from nitric acid solutions with bidentate neutral organophosphorus compounds in the presence of l-butyl-3-methylimidazolium hexafluorophosphate. Radiochemistry 50(3):266–273

    Article  CAS  Google Scholar 

  76. Pribylova G, Smirnov I, Novikov A (2012) Effect of ionic liquids on the extraction of americium by diphenyl (dibutyl) carbamoylmethyl phosphine oxide in dichloroethane from nitric acid solutions. J Radioanal Nucl Chem 295(1):83–87

    Article  CAS  Google Scholar 

  77. Turanova AN, Karandashev VK, Yarkevich AN (2018) Extraction of rare-earth elements from hydrochloric acid by carbamoyl methyl phosphine oxides in the presence of ionic liquids. Russ J Inorg Chem 63(3):406–413

    Article  Google Scholar 

  78. Turanova AN, Karandashev VK (2020) Extraction of lanthanides(III) from nitric acid solutions with tetraphenylmethylenediphosphine in the presence of bis[(trifluoromethyl)sulfonyl]imides of quaternary ammonium bases. Russ J Inorg Chem 64:113–118

    Article  Google Scholar 

  79. Gao S, Sun T, Chen Q, Shen X (2013) Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids. J Hazard Mater 26:562–568

    Article  CAS  Google Scholar 

  80. Riaño S, Foltova SS, Binnemans K (2020) Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. RSC Adv 10(1):307–316

    Article  Google Scholar 

  81. Mohapatra P, Raut D, Sengupta A (2014) Extraction of uranyl ion from nitric acid medium using solvent containing TOPO and its mixture with D2EHPA in room temperature ionic liquids. Sep Purif Technol 133:69–75

    Article  CAS  Google Scholar 

  82. Lohithakshan K, Patil P, Aggarwal S (2014) Solvent extraction studies of plutonium(IV) and americium(III) in room temperature ionic liquid (RTIL) by di-2-ethyl hexyl phosphoric acid (HDEHP) as extractant. J Radioanal Nucl Chem 301(1):153–157

    Article  CAS  Google Scholar 

  83. Singh M, Sengupta A, Jayabun S, Ippili T (2017) Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ‘ion-exchange’ and ‘solvation’ mechanism. J Radioanal Nucl Chem 311(1):195–208

    Article  CAS  Google Scholar 

  84. Yaftian MR, Karamzadeh Z, Shiri-Yekta Z, Nilchi A, Dolatyari L (2016) Extraction-separation of Eu(III)/Th(IV) ions with a phosphorylated ligand in an ionic liquid. Iran J Chem Cheml Eng Int 35(2):89–95

    Google Scholar 

  85. Sharova E, Artyushin O, Turanov A, Karandashev V, Meshkova S, Topilova Z, Odinets I (2011) N-Tris[(2-aminoethyl)-2-(diphenylphosphoryl) acetamide)]— novel CMPO tripodand: synthesis, extraction studies and luminescent properties of lanthanide complexes. Cen Eur J Chem 10(1):146–156

    Article  CAS  Google Scholar 

  86. Gorbacheva S, Novikov A, Pribylova G, Ryleeva V, Abramova A, Travkina A (2015) Impact of ionic liquids on europium and americium extraction by an upper rim phosphorylated calixarene. J Radioanal Nucl Chem 303(1):193–197

    Article  CAS  Google Scholar 

  87. Ansari SA, Mohapatra PK, Chen L, Yuan L, Feng W (2018) Complexation of actinides with phosphine oxide functionalized pillar[5]arenes: extraction and spectroscopic studies. Eur J Inorg Chem 36:4022–4030

    Article  CAS  Google Scholar 

  88. Turanov A, Karandashev V, Baulin V (2012) Extraction of lanthanides(III) with N, N′-bis(diphenylphosphinyl-methylcarbonyl)diaza-18-crown-6 in the presence of ionic liquids. Sol Extrac Ion Exch 30(3):244–261

    Article  CAS  Google Scholar 

  89. Turanov AN, Karandashev VK, Baulin VE (2008) Effect of anions on the extraction of lanthanides (III) by N, N′-dimethyl-N, N′-diphenyl -3- oxapentane diamide. Solv Extr Ion Exch 26(2):77–99

    Article  CAS  Google Scholar 

  90. Zuo Y, Liu Y, Chen J, Li DQ (2008) The separation of cerium (IV) from nitric acid solutions containing thorium (IV) and lanthanides (III) using pure [C8mim] PF6 as extracting phase. Ind Eng Chem Res 47(7):2349–2355

    Article  CAS  Google Scholar 

  91. Zuo Y, Chen J, Li D (2008) Reversed micellarsolubilization extraction and separation of thorium (IV) from rare earth (III) by primary amine N1923 in ionic liquid. Sep Purif Technol 63(3):684–690

    Article  CAS  Google Scholar 

  92. Yoon SJ, Lee JG, Tajima H, Yamasaki A, Kiyono F, Nakazato T, Tao H (2010) Extraction of lanthanide ions from aqueous solution by bis (2-ethylhexyl) phosphoric acid with room-temperature ionic liquids. J Ind Eng Chem 16(3):350–354

    Article  CAS  Google Scholar 

  93. Rout A, Karmakar S, Venkatesan KA, Srinivasan TG, Rao PV (2011) Room temperature ionic liquid diluent for the mutual separation of europium (III) from americium (III). Sep Purif Technol 81(2):109–115

    Article  CAS  Google Scholar 

  94. Sun X, Bell JR, Luo H, Dai S (2011) Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases. Dalton Trans 40(31):8019–8023

    Article  CAS  PubMed  Google Scholar 

  95. Rout A, Venkatesan K, Srinivasan T, Vasudeva Rao P (2012) Liquid–liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent. J Hazard Materials 221:62–67

    Article  CAS  Google Scholar 

  96. Panja S, Mohapatra P, Tripathi S, Gandhi P, Janardan P (2012) A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol 96:289–295

    Article  CAS  Google Scholar 

  97. Mincher M, Quach D, Liao Y, Mincher B, Wai C (2012) The Partitioning of Americium and the Lanthanides Using Tetrabutyldiglycolamide (TBDGA) in octanol and in ionic liquid solution. Sol Extrac Ion Exch 30(7):735–747

    Article  CAS  Google Scholar 

  98. Shen Y, Tan X, Wang L, Wu W (2011) Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep Purif Technol 78(3):298–302

    Article  CAS  Google Scholar 

  99. Sengupta A, Murali M, Mohapatra P (2013) A comparative study of the complexation of Am(III) and Eu(III) with TODGA in room temperature ionic liquid. J Radioanal Nucl Chem 298(1):405–412

    Article  CAS  Google Scholar 

  100. Huang X, Zhang Q, Liu J, He H, Zhu W, Wang X (2013) Solvent extraction of Pu(IV) with TODGA in C6mimTf2N. J Radioanal Nucl Chem 298(1):41–46

    Article  CAS  Google Scholar 

  101. Zhang Y, Liu Z, Fan F, Zhu L, Shen Y (2014) Extraction of Uranium and Thorium from Nitric Acid Solution by TODGA in Ionic Liquids. Sep Sci Technol 49(12):1895–1902

    Article  CAS  Google Scholar 

  102. Rama R, Rout A, Venkatesan K, Antony M, Vasudeva-Rao P (2015) Loading behavior of Eu(III) at high aqueous concentrations in diglycolamide/ionic liquid systems. J Radioanal Nucl Chem 308(3):835–842

    Article  CAS  Google Scholar 

  103. Turanov A, Karandashev V, Boltoeva M, Gaillard C, Mazan V (2016) Synergistic extraction of uranium(VI) with TODGA and hydrophobic ionic liquid mixtures into molecular diluent. Sep Purif Technol 164:97–106

    Article  CAS  Google Scholar 

  104. Boltoevaa M, Gaillardc C, Georga S, Karandashev VK, Turanov AN (2018) Speciation of uranium(VI) extracted from acidic nitrate media by TODGA into molecular and ionic solvents. Sep Purif Technol 203:11–19

    Article  CAS  Google Scholar 

  105. Ansari SA, Mohapatra PK, Raut DR (2018) Extraction of Np4+ and NpO2+ from Nitric Acid Medium Using TODGA in Room Temperature Ionic Liquids. J Sol Chem 47:1326–1338

    Article  CAS  Google Scholar 

  106. Murakami S, Matsumiya M, Yamada T, Tsunashima K (2016) Extraction of Pr(III), Nd(III), and Dy(III) from HTFSA aqueous solution by TODGA/phosphonium-based ionic liquids. Sol Extrac Ion Exch 34(2):172–187

    Article  CAS  Google Scholar 

  107. Rout A, Chatterjee K, Venkatesa K, Sahu K, Antony M, Rao PV (2016) Solvent extraction of plutonium(IV) in monoamide—ammonium ionic liquidmixture. Sep Purif Technol 159:43–49

    Article  CAS  Google Scholar 

  108. Pathak P, Prabhu D, Kumari N, Mohapatra P (2015) Studies on the extraction of actinides using a solvent containing D2EHiBA in room temperature ionic liquids: unusual extraction of the tetravalent ions. Sep Purification Technol 50(3):373–379

    CAS  Google Scholar 

  109. Rao A, Tomar B (2016) Extraction of thorium employing N, N-dialkyl amide into room temperature ionic liquid followed by supercritical carbon dioxide stripping. Sep Purif Technol 161:159–164

    Article  CAS  Google Scholar 

  110. Wu X, Liu Y, Hu S, Chu T (2015) Extraction of uranyl ion into ionic liquid by N, N, N′, N′-tetrabutylsuccinamide and spectroscopic study of uranyl complex. J Radioanal Nucl Chem 307(1):161–167

    Article  CAS  Google Scholar 

  111. Panja S, Ruhela R, Tripathi S, Dhami P, Singh A, Gandhi P (2015) Effect of room temperature ionic liquid on the extraction behavior of plutonium (IV) using a novel reagent, bis-(2-ethylhexyl) carbamoylmethoxyphenoxy-bis-(2-ethylhexyl) acetamide [benzodioxodiamide, BenzoDODA]. Sep Purif Technol 151:139–146

    Article  CAS  Google Scholar 

  112. Sengupta A, Mohapatra P, Iqbal M, Verboom W, Huskens J, Godbole S (2012) Extraction of Am(iii) using novel solvent systems containing a tripodaldiglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing. RSC Advances 2(19):7492–7500

    Article  CAS  Google Scholar 

  113. Seraj A, Ansari, Prasanta K, Mohapatra, Parveen K, Verma, Andrea L, Ashok K, Yadav, Shambhu NJ, Dibyendu B, Jurriaan H, and Willem V (2020) Highly Efficient extraction of trivalent f-cations using several N-pivot tripodal diglycolamide ligands in an ionic liquid: the role of ligand structure on metal ion complexation. Eur J Inorg Chem 191–199

  114. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem 52(5):2533–2541

    Article  CAS  PubMed  Google Scholar 

  115. Iqbal M (2012) Synthesis and evaluation of potential ligands for nuclear waste processing. PhD thesis, University of Twente

  116. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Godbolea SV, Verboomb W (2013) Remarkable acidity independent actinide extraction with a both-side diglycolamide-functionalized calix[4]arene. Dalton Trans 42:8558–8562

    Article  CAS  PubMed  Google Scholar 

  117. Wehbie M, Arrachart G, Karamé I, Ghannam L, Pellet-Rostaing S (2017) Ionic liquid-based extraction system using diglycolamide functionalized macrocyclic platforms for the extraction and recovery of lanthanides. Dalton Trans 46:16505–16515

    Article  CAS  PubMed  Google Scholar 

  118. Rout A, Venkatesan KA, Antony M, Rao PR (2016) Liquid–liquid extraction of americium(III) using a completely incenerable ionic liquid system. Sep Purif Technol 158:137–143

    Article  CAS  Google Scholar 

  119. Patil A, Pathak P, Shinde V, Alyapyshev M, Babain V, Mohapatra P (2015) A novel solvent system containing a dipicolinamide in room temperature ionic liquids for actinide ion extraction. J Radioanal Nucl Chem 305(2):521–528

    Article  CAS  Google Scholar 

  120. Rama R, Rout A, Venkatesan K, Antony M, Vasudeva RP (2015) Extraction behavior of americium (III) in benzoylpyrazolone dissolved in pyrrolidinium based ionic liquid. Sep Sci Technol 50(14):2164–2169

    CAS  Google Scholar 

  121. Petrova M (2016) Worthy Extraction and Uncommon Selectivity of 4f-Ions in Ionic Liquid Medium: 4-Acylpyrazolones and CMPO. ACS. Sustain Chem Eng 4(4):2366–2375

    Article  CAS  Google Scholar 

  122. Long Z, Dong Z, Ma G, Yuan W (2015) Solution extraction of several lanthanides from nitric acid with isohexyl-BTP in [Cnmim][NTf2] ionic liquid. J Rare Earths 33(11):1182–1188

    Article  CAS  Google Scholar 

  123. Bhattacharyya A, Ansari S, Gadly T, Ghosh S, Mohapatra M, Mohapatra P (2015) A remarkable enhancement in Am 3+/Eu 3 + selectivity by an ionic liquid based solvent containing bis-1,2,4-triazinyl pyridine derivatives: DFT validation of experimental results. Dalton Trans 44(13):6193–6201

    Article  CAS  PubMed  Google Scholar 

  124. Jensen MP, Borkowski M, Laszak I, Beitz J, Rickert P, Dietz M (2012) Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid. Sep Sci Technol 47(2):233–243

    Article  CAS  Google Scholar 

  125. Fu J, Chen Q, Sun T, Shen X (2013) Extraction of Th(IV) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping. Sep Purif Technol 119:66–71

    Article  CAS  Google Scholar 

  126. Raut D, Mohapatra P (2015) Extraction of uranyl ion using 2-thenoyltrifluoro acetone (HTTA) in room temperature ionic liquids. Sep Sci Technol 50(3):380–386

    Article  CAS  Google Scholar 

  127. Priya S, Sengupta A, Jayabun S (2016) Understanding the extraction/complexation of uranium using structurally modified sulphoxides in room temperature ionic liquid: speciation, kinetics, radiolytic stability, stripping and luminescence investigation. J Radioanal Nucl Chem 310(3):1049–1059

    Article  CAS  Google Scholar 

  128. Mathuthu M, Mokhine ND, Stassen E (2019) Organic solvent extraction of uranium from alkaline nuclear waste. J Radioanal Nucl Chem 319(3):687–693

    Article  CAS  Google Scholar 

  129. Ouadi A, Gadenne B, Hesemann P, Moreau JJ, Billard I, Gaillard C, Moutiers G (2006) Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies. Chem Eur J 12(11):3074–3081

    Article  CAS  PubMed  Google Scholar 

  130. Ouadi A, Klimchuk O, Gaillard C, Billard I (2007) Solvent extraction of U (VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem 9(11):1160–1162

    Article  CAS  Google Scholar 

  131. Srncik M, Kogelnig D, Stojanovic A, Körner W, Krachler R, Wallner G (2009) Uranium extraction from aqueous solutions by ionic liquids. Appl Radiat Isot 67(12):2146–2149

    Article  CAS  PubMed  Google Scholar 

  132. Rout A, Venkatesan KA, Srinivasan TG, Rao PV (2010) Unusual extraction of plutonium (IV) from uranium (VI) and americium (III) using phosphonate based task specific ionic liquid. Radiochim Acta 98(8):459–466

    Article  CAS  Google Scholar 

  133. Bonnaffé-Moity M, Ouadi A, Mazan V, Miroshnichenko S, Ternova D, Geor S, Billard I (2012) Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans 41(25):7526–7536

    Article  PubMed  CAS  Google Scholar 

  134. Rout A, Venkatesan KA, Srinivasan TG, Rao PV (2012) Extraction behavior of actinides and fission products in amide functionalized ionic liquid. Sep Purif Technol 97:164–171

    Article  CAS  Google Scholar 

  135. Raut DR, Sharma S, Ghosh SK, Mohapatra PK (2017) Glycolamide-functionalized ionic liquid: synthesis and actinide ion extraction studies. Sep Sci Technol 52(8):1430–1440

    Article  CAS  Google Scholar 

  136. Wang W, Liu Y, Xu A, Yang H, Cui H, Chen J (2012) Solvent extraction of yttrium by task-specific ionic liquids bearing carboxylic group. Chin J Chem Eng 20(1):40–46

    Article  Google Scholar 

  137. Wu H, Zhan X, Yin X, Yusuke I, Miki H, Takeshita K (2018) Extraction behavior of lanthanides by a novel ionic liquid Including N, N, N’, N′-tetrakis(2-pyridylmethyl)-1,3-diaminopropane-2-amido structure: soft-hard donor combined strategy. Chem Lett 47(6):732–773

    Article  CAS  Google Scholar 

  138. Sasaki K, Suzuki T, Mori T, Arai T, Takao K, Ikeda Y (2014) Selective liquid–liquid extraction of uranyl species using task-specific ionic liquid, betainium B is(trifluoromethylsulfonyl)imide. Chem Lett 43(6):775–777

    Article  CAS  Google Scholar 

  139. Mori T, Takao K, Sasaki K, Suzuki T, Arai T, Ikeda Y (2015) Homogeneous liquid–liquid extraction of U(VI) from HNO3 aqueous solution to betainiumbis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep Purif Technol 155:133–138

    Article  CAS  Google Scholar 

  140. Khodakarami M, Alagha L (2020) Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups. Sep Purif Technol 232:115952

    Article  CAS  Google Scholar 

  141. Rout A, Binnemans K (2014) Solvent extraction of neodymium(III) by functionalized ionic liquid trioctylmethyl ammonium dioctyldiglycolamate in fluorine-free ionic liquid diluent. Ind Eng Chem Res 53(15):6500–6508

    Article  CAS  Google Scholar 

  142. Sengupta A, Mohapatra P, Iqbal M, Huskens J, Verboom W (2013) A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep Purif Technol 118:264–270

    Article  CAS  Google Scholar 

  143. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Highly efficient diglycolamide-based task-specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem A Eur J 19(9):3230–3238

    Article  CAS  Google Scholar 

  144. Sengupta A, Mohapatra PK, Kadam RM, Manna D, Ghanty TK, Iqbal M, Huskensc J, Verboom W (2014) Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: extraction, luminescence, theoretical and EPR investigations. RSC Adv 4(87):46613–46623

    Article  CAS  Google Scholar 

  145. Sengupta A, Murali MS, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2015) An insight into the complexation of UO2 2+ with diglycolamide-functionalized task specific ionic liquid: kinetic, cyclic voltammetric, extraction and spectroscopic investigations. Polyhedron 102:549–555

    Article  CAS  Google Scholar 

  146. Maria L, Cruz A, Carretas JM, Monteiro B, Galinha C, Gomes SS, Leal JP (2020) Improving the selective extraction of lanthanides by using functionalised ionic liquids. Sep Purif Technol 237:116354

    Article  CAS  Google Scholar 

  147. Yun W, Youwen Z, Fuyou F, Huimin L, Peizhuo H, Yinglin S (2013) Synthesis of task-specific ionic liquids with grafted diglycolamide moiety. Complexation and stripping of lanthanides. J Radioanal Nucl Chem 299(3):1213–1218

    Article  CAS  Google Scholar 

  148. Sun X, Luo H, Dai S (2012) Solvent extraction of rare-earth ions based on functionalized ionic liquids. Talanta 90:132–137

    Article  CAS  PubMed  Google Scholar 

  149. Rout A, Venkatesan KA, Srinivasan TG, Rao PV (2013) Tuning the extractive properties of purex solvent using room temperature ionic liquid. Sep Sci Technol 48(17):2576–2581

    Article  CAS  Google Scholar 

  150. Sun X, Do-Thanh C, Luo H, Dai S (2014) The optimization of an ionic liquid-based TALSPEAK-like process for rare earth ions separation. Chem Eng J 239:392–398

    Article  CAS  Google Scholar 

  151. Rout A, Venkatesan KA, Srinivasan TG, Rao PV (2012) Ionic liquid extractants in molecular diluents: extraction behavior of europium (III) in quarternary ammonium-based ionic liquids. Sep Purif Technol 95:26–31

    Article  CAS  Google Scholar 

  152. Guo L, Chen J, Shen L, Zhang J, Zhang D, Deng Y (2014) Highly selective extraction and separation of rare earths(III) using bifunctional ionic liquid extractant. ACS Sustain Chem Eng 2(8):1968–1975

    Article  CAS  Google Scholar 

  153. Li H, Wang B, Liu S (2015) Synthesis of pyridine-based task-specific ionic liquid with alkyl phosphate cation and extraction performance for uranyl ion. Ionics 21(9):2551–2556

    Article  CAS  Google Scholar 

  154. Turanov A, Karandashev V, Artyushin O, Sharova E (2015) Extraction of U(VI), Th(IV), and lanthanides(III) from nitric acid solutions with CMPO-functionalized ionic liquid in molecular diluents. Sol Extrac Ion Exch 33(6):540–553

    Article  CAS  Google Scholar 

  155. Rama R, Rout A, Venkatesan K, Antony M (2017) A novel phosphoramide task specific ionic liquid for the selective separation of plutonium (IV) from other actinides. Sep Purif Technol 172:7–15

    Article  CAS  Google Scholar 

  156. Mohapatra PK, Kandwal P, Iqbal M, Huskens J, Muralia MS, Verboom W (2013) A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans 42:4343–4347

    Article  CAS  PubMed  Google Scholar 

  157. Ternova D, Ouadi A, Mazan V, Georg S, Boltoeva M, Kalchenko V, Miroshnichenko S, Billard I, Gaillard C (2018) New ionic liquid based on the CMPO pattern for the sequential extraction of U(VI), Am(III) and Eu(III). J Sol Chem 47:1309–1325

    Article  CAS  Google Scholar 

  158. Paramanik M, Raut DR, Sengupta A, Ghosh SK, Mohapatra PK (2016) A trialkyl phosphine oxide functionalized task specific ionic liquid for actinide ion complexation: extraction and spectroscopic studies. RSC Adv 6(24):19763–19767

    Article  CAS  Google Scholar 

  159. Xie X, Qin Z, He Y, Xiong P, Huang Z, Mao Y, Wei H, Zhuo L (2017) Signifcant enhanced uranyl ions extraction efciency with phosphoramidate-functionalized ionic liquids via synergistic efect of coordination and hydrogen bond. Sci Rep 7(1):15735–15745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Biswas S, Rupawate VH, Roy SB, Sahu M (2014) Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(VI) extraction from aqueous media. J Radioanal Nucl Chem 300(2):853–858

    Article  CAS  Google Scholar 

  161. Platzer S, Sap O, Leym R, Wallner G, Jirsa F, Kandioller W, Krachler R, Keppler BK (2015) Extraction of natural radionuclides from aqueous solutions by novel maltolate-based task-specific ionic liquids. J Radioanal Nucl Chem 303(3):2483–2488

    CAS  PubMed  Google Scholar 

  162. Gujar RB, Ansari SA, Mohapatra PK (2015) Spectacular enhancements in actinide ion uptake using novel extraction chromatography resins containing TODGA and ionic liquid. Sep Puri Technol 141:229–234

    Article  CAS  Google Scholar 

  163. Gujar RB, Ansari SA, Mohapatra PK, Leoncini A, Verboom W (2016) Solid phase extraction of Am(III) and Cm(III) from acidic feeds using tetraethyl diglycolamide (TEDGA) in ionic liquid. J Radioanal Nucl Chem 309(2):819–825

    CAS  Google Scholar 

  164. Gujar RB, Ansari SA, Verboom W, Mohapatra PK (2016) Multi-podantdiglycolamides and room temperature ionic liquid impregnated resins: an excellent combination for extraction chromatography of actinides. J Chromatogr 1448:58–66

    Article  CAS  Google Scholar 

  165. Myasoedova GV, Zakharchenko EA, Molochnikova NP, Myasoedov BF (2008) Solid extractants prepared with ionic liquids and their use for recovery of actinides from nitric acid solutions. Radiochemistry 50(5):482–485

    Article  CAS  Google Scholar 

  166. Odinets IL, Sharova EV, Artyshin OI, Lyssenko KA, Nelyubina YV, Myasoedova GV, Zakharchenro EA (2010) Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery. Dalton Trans 39(17):4170–4178

    Article  CAS  PubMed  Google Scholar 

  167. Paramanika M, Panja S, Dhami PS, Yadav JS, Kaushik CP, Ghosha SK (2018) Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U(VI) and Pu(IV) by a novel solvent impregnated resin containing trialkyl phosphine oxide functionalized ionic liquid. J Hazard Mater 354:125–132

    Article  CAS  Google Scholar 

  168. Mahanty B, Mohapatra PK (2020) Highly efficient separation of thorium from uranium in nitric acid feeds by solid phase extraction using Aliquat 336. Sep Purif Technol 237:116318

    Article  CAS  Google Scholar 

  169. Qi MY, Wu GZ, Chen SM, Liu YD (2007) Gamma radiolysis of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Radiat Res 167:508–514

    Article  CAS  PubMed  Google Scholar 

  170. Behar D, Gonzalez C, Neta P (2001) Reaction kinetics in ionic liquids: pulse radiolysis studies of 1-butyl-3-methylimidazolium salts. J Phys Chem A 105(32):7607–7614

    Article  CAS  Google Scholar 

  171. Berthon L, Nikitenko SI, Bisel I, Berthon C, Faucon M, Saucerotte B, Zorz N, Moisy P (2006) Influence of gamma irradiation on hydrophobic room-temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N. Dalton Trans 21:2526–2534

    Article  CAS  Google Scholar 

  172. Rouzo GL, Lamouroux C, Dauvois V, Dannoux A, Legand S, Durand D, Moisy P, Moutiers G (2009) Anion effect on radiochemical stability of room-temperature ionic liquids under gamma irradiation. Dalton Trans 31:6175–6184

    Article  CAS  Google Scholar 

  173. Qi MY, Wu G, Li Q, Luo Y (2007) γ-Radiation effect on ionic liquid [bmim][BF4]. Radiat Phys Chem 77(7):877–883

    Article  CAS  Google Scholar 

  174. Howett S (2013) Investigation the Effects of Radiation on Phosphonium based ionic liquids. Electronic Thesis and Dissertation Repository 1639

  175. Mincher BJ, Mezyk SP, Elias G, Groenewold GS, Riddle CL, Olson LG (2013) The radiation chemistry of CMPO: part 1. Gamma radiolysis. Solv Extr Ion Exchange 31:715–730

    Article  CAS  Google Scholar 

  176. Shkrob IA, Marin TW, Luo H, Dai S (2013) Radiation stability of cations in ionic liquids. Alkyl and benzyl derivatives of 5-membered ring heterocycles. J Phys Chem B 117(46):14372–14384

    Article  CAS  PubMed  Google Scholar 

  177. Shkrob IA, Marin TW, Hatcher J, Cook AR, Szreder T, Wishart JF (2013) Radiation stability of cations in ionic liquids. 2. Improved radiation resistance through charge delocalization in 1-benzylpyridinium. J Phys Chem B 117(4):14385–14399

    Article  CAS  PubMed  Google Scholar 

  178. Ilawe NV, Fu J, Ramanathan S, Wong BM, Wu J (2016) Chemical and radiation stability of ionic liquids: a computational screening study. J Phys Chem C 120(49):27757–27767

    Article  CAS  Google Scholar 

  179. Shkrob IA, Chemerisov SD (2007) The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J Phys Chem B 111(40):11786–11793

    Article  CAS  PubMed  Google Scholar 

  180. Sengupta A, Mohapatra PK (2014) Multiple diglycolamide functionalized ligands in room temperature ionic liquids: ‘Green’ solvents for actinide partitioning. Barc Newsl 342:47–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassir Iqbal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Waheed, K., Rahat, S.B. et al. An overview of molecular extractants in room temperature ionic liquids and task specific ionic liquids for the partitioning of actinides/lanthanides. J Radioanal Nucl Chem 325, 1–31 (2020). https://doi.org/10.1007/s10967-020-07199-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07199-1

Keywords

Navigation