Skip to main content
Log in

Ecological assesment of Akkuyu nuclear power plant site marine sediments in terms of radionuclide and metal accumulation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Trace element availability and radioactivity concentrations of marine sediments of AKKUYU Nuclear Power Plant site were determined. The measured Cd, Cr, Cu, Mn, Ni, Pb and Zn concentrations were 3.4 ± 0.020, 22 ± 0.94, 17 ± 0.66, 226 ± 11.9, 58.9 ± 10.3, 8.3 ± 0.45 and 39.9 ± 1.65 ppm, respectively. Cd, Mn and Ni enrichment were observed. The calculated mean 226Ra, 232Th, 40 K and 137Cs concentrations were 24.7 ± 1.64, 19.4 ± 1.31, 416 ± 25.8 and 3.2 ± 0.53 Bq kg−1, respectively. Findings were comparable with reported literature for Turkey, Mediterranean Basin and other countries from the world. The presented data would enable to determine the possible future effects of the Nuclear Power Plant to the marine environment.

Graphic abstract

Radionuclide and trace metal concentrations of marine sediments were presented in log scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larsen B, Jensen A (1989) Evaluation of the sensitivity og sediment monitoring stations in pollution monitoring. Mar Pollut Bull 20:556–560

    Article  CAS  Google Scholar 

  2. Bryan GW (1979) Bioaccumulation of marine pollutants. Philos Trans Royal Soc of Lond, Ser B 286:483–505

    Article  CAS  Google Scholar 

  3. Förstner U, Wittman GTW (1983) Metal pollution in the aquatic environment. Springer, Verlag

    Google Scholar 

  4. Yilmaz M (2020) Effect of Cage Culture Environment on Farmed Fish in Terms of Metal Accumulation. Aquac Res. https://doi.org/10.1111/are.14642

    Article  Google Scholar 

  5. Radi Dar MA & El-Saharty A (2012) Some radioactive-elements in the coastal sediments of the Mediterranean Sea. Radiat Prot Dosim 153(3):361–368

    Article  CAS  Google Scholar 

  6. El-Taher A, Madkour HA (2011) Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. Appl Radiat Isot 69:550–558

    Article  CAS  PubMed  Google Scholar 

  7. Periáñez R, Bezhenar R, Brovchenko I, Duffa C, Iosjpe M, Jung KT, Kim KO, Kobayashi T, Liptak L, Little A, Maderich V, McGinnity P, Min BI, Nies H, Osvath I, Suh KS & de With, G (2019) Marine radionuclide transport modelling: recent developments, problems and challenges. Environ Model Softw 122:104523

    Article  Google Scholar 

  8. Yılmaz M, Ozmen SF (2019) Kültür minekop baliğinin (umbrina cirrosa linnaeus, 1758) radyolojik risk değerlendirmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 14(2):269–275

    Google Scholar 

  9. Fowler SW (1997) Marine biogeochemistry of radionuclides Strategies and methodologies for applied marine radioactivity studies. IAEA-TCS 7:53–82

    Google Scholar 

  10. Sert I, Ozel FE, Yaprak G, Eftelioglu M (2015) Determination of the latest sediment accumulation rates and pattern by performing 210Pb models and 137Cs technique in the Lake Bafa, Mugla, Turkey. J Radioanal Nucl Chem 307(1):313–323

    Article  CAS  Google Scholar 

  11. Lima A, Albanese S, Cicchella D (2005) Geochemical baselines for the radioelements K, U and Th in the Campania region, Italy: a comparison of stream-sediment geochemistry and gamma-ray surveys. Appl Geochem 20:611–625

    Article  CAS  Google Scholar 

  12. Kılıç Ö, Çotuk Y (2011) Radioactivity concentrations in sediment and mussel of Bosphorus and Golden Horn. J Radioanal Nucl Chem 289:627–635

    Article  CAS  Google Scholar 

  13. Yilmaz M, Ozmen SF (2020) Radiological risk assessment of fish feed and feed raw materials. Aquac Res 00:1–7

    CAS  Google Scholar 

  14. Caridi F, Messina M, Faggio G, Santangelo S, Messina G, Belmusto G (2018) Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy. Eur Phys J Plus 133(2):65

    Article  CAS  Google Scholar 

  15. Dai MH, Buesseler KO, Kelley JM, Andrews JE, Pike S, Wacker JF (2001) Size-fractionated plutonium isotopes in a coastal environment. J Environ Radioact 53:9–25

    Article  CAS  PubMed  Google Scholar 

  16. Noureddine A, Benkrid M, Hammadi A, Boudjenoun R, Menacer M, Khaber A, Kecir MS (2003) Radioactivity distribution in surface and core sediment of the central part of the Algerian Coast: an estimation of the recent sedimentation rate. Mediterr Mar Sci 4(2):53–58

    Article  Google Scholar 

  17. Ekidin AA, Antonov KL, Vasyanovich ME, Kapustin IA, Filatov IY (2019) radioiodine release into the atmosphere during normal operation of nuclear power plants. Radiochemistry 61(3):352–364

    Article  CAS  Google Scholar 

  18. Harris JT, Miller DW (2008) Radiological effluents released by U.S. commercial nuclear power plants from 1995–2005. Health Phys 95(6):734–743

    Article  CAS  PubMed  Google Scholar 

  19. Hull AP (1973) Average effluent releases from U.S. nuclear power reactors, compared with those from fossil-fueled plants, in terms of currently applicable environmental standards. International congress of the International Radiation Protection Association meeting, Washington, District of Columbia, USA

  20. Marley RC (1979) Radioactivity releases to the environment by nuclear power plants: locally and for the total fuel cycle (Report No: MIT-EL79- 014). MIT Energy Laboratory, Massachusetts, USA

  21. Phillips JW, Gruhlke J (1978) Summary of radioactivity released in effluents from nuclear power plants from 1973 thru 1976 (Report No: PB—295100). Office of Radiation Programs, Technology Assessment Div., Washington DC, USA

  22. UNSCEAR (1982) Ionizing radiation: sources and biological effects. report to general assembly, with scientific annexes. United Nations publications

  23. UNSCEAR (1988) Sources, effects and risks of ionizing radiation. Report to general assembly, with scientific annexes. United Nations publications

  24. UNSCEAR (1993) Sources and effects of ionizing radiation. Report to general assembly, with scientific annexes. United Nations publications

  25. UNSCEAR (2000) Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes. United Nations Publications

  26. UNSCEAR (2008) Sources of ionizing radiation. Report to general assembly, with scientific annexes. United Nations publications

  27. Zhao X, Hou X, Du J, Fan Y (2019) Anthropogenic 129I in the sediment cores in the East China sea: Sources and transport pathways. Environ Pollut 245:443–452

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira PA de L, Amorim LF, Tura PM, Zacheo VAM , Figueira RCL (2015) Levels of 137Cs and 40K in marine superficial sediments near the Angra Nuclear Power Plant (Angra dos Reis, SE Brazil). Radiochimica Acta 103(10):729–735

    Article  CAS  Google Scholar 

  29. Radakovitch O, Charmasson S, Arnaud M, Bouisset P (1999) 210Pb and Caesium Accumulation in the Rhône Delta Sediments. Estuar Coast Shelf Sci 48(1):77–92

    Article  CAS  Google Scholar 

  30. Fan Y, Hou X, Zhou W, Liu G (2016) 129 I record of nuclear activities in marine sediment core from Jiaozhou Bay in China. J Environ Radioact 154:15–24

    Article  CAS  PubMed  Google Scholar 

  31. Il’in GV, Kasatkina NE, Moiseev DV, Usyagina IS (2017) Infrastructure objects of the nuclear fleet as sources of radioactive contamination of the Barents Sea: waste repository in Guba Andreeva. At Energ 122(2):131–137

    Article  CAS  Google Scholar 

  32. He C, Hou X, Zhao Y, Wang Z, Li H, Chen N, Liu Q, Zhang L, Luo M, Liang W, Fan Y, Zhao X (2011) 129I level in seawater near a nuclear power plant determined by accelerator mass spectrometer. Nucl Instrum Methods Phys Res, Sect A 632(1):152–156

    Article  CAS  Google Scholar 

  33. De Carvalho GF, Godoy JM, de Carvalho ZL, de Souza EM, Rodrigues Silva JI, Tadeu Lopes R (2014) Tritium (3H) as a tracer for monitoring the dispersion of conservative radionuclides discharged by the Angra dos Reis nuclear power plants in the Piraquara de Fora Bay, Brazil. J Environ Radioact 136:169–173

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez-Cabeza JA, Molero J (2000) Plutonium, americium and radiocaesium in the marine environment close to the Vandellós I nuclear power plant before decommissioning. J Environ Radioact 51(2):211–228

    Article  CAS  Google Scholar 

  35. Yaprak G, Aslani MAA (2010) External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia. J Radioanal Nucl Chem 283:279–287

    Article  CAS  Google Scholar 

  36. Ozmen SF, Boztosun I, Yavuz M, Tunc MR (2014) Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry. Radiat Prot Dosim 158(4):461–465

    Article  CAS  Google Scholar 

  37. Ozmen SF, Cesur A, Boztosun I, Yavuz M (2014) Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey. Radiat Phys Chem 103:37–44

    Article  CAS  Google Scholar 

  38. Curie LA (1968) Limits for Qualitative Detection and Quantitative determination. Anal Chem 40(3):586–693

    Article  Google Scholar 

  39. Bouyoucos GJ (1955) A Recalibration of The Hydrometer Metod for Making Mechanical Analysis of The Soil. Agron J 4(9):434

    Article  Google Scholar 

  40. Walkley A (1935) An examination of methosds for determining organic carbon and nitrogen in soils. J Agric Sci 25:598–609

    Article  CAS  Google Scholar 

  41. Lacombe H (1975) Aperçus sur l'apport â l'océanographe physique des recherches récentes en Méditerranée, Bull. Et. Mediterr 7:5–25

  42. Schnitzer M (1982) Organic matter characterization. In: Methods of Soil Analysis. Part 2. Soil Science Society of America Madison, USA.

  43. Andriesse JP (1988) Nature and managment of tropical peat soils. FAO Soils Bulletin 59, Rome

  44. Schnitzer M (1992) Significance of soil organic matter in soil formation, transport processes in soils and in the formation of soil structure. Soil utillization and soil fertility, 4. Humus Budget 206:63–81

    Google Scholar 

  45. El-Reefy HI, Sharshar T, Elnimr T, Badran HM (2010) Distribution of gamma-ray emitting radionuclides in the marine environment of the Burullus Lake: II. Bottom Sediments Environ Monit Assess 169:273–284

    Article  CAS  PubMed  Google Scholar 

  46. Papaefthymiou H, Gkaragkouni A, Papatheodorou G, Geraga M (2017) Radionuclide activities and elemental concentrations in sediments from a polluted marine environment (Saronikos Gulf–Greece). J Radioanal Nucl Chem 314:1841–1852

    Article  CAS  Google Scholar 

  47. Pappa FK, Tsabaris C, Ioannidou A, Patiris DL, Kaberi H, Pashalidis I, Eleftheriou G, Androulakaki EG, Vlastou R (2016) Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl Radiat Isot 116:22–33

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi RM, Patra AC, Mohapatra S, Sahoo SK, Kumar AV, Puranik VD (2013) Natural radioactivity in surface marine sediments near the shore of Vizag, South East India and associated radiological risk. J Radioanal Nucl Chem 295:1829–1835

    Article  CAS  Google Scholar 

  49. Desideri D, Meli MA, Roselli C, Testa C (2002) Geochemical partitioning of actinides, 137Cs and 40K in a Tyrrhenian sea sediment sample: comparison to stable elements. J Radioanal Nucl Chem 251:37–41

    Article  CAS  Google Scholar 

  50. Zare MR, Mostajaboddavati M, Kamali M, Abdi MR, Mortazavi MS (2012) 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman Sea using high-resolution gamma-ray spectrometry. Mar Pollut Bull 64:1956–1961

    Article  CAS  PubMed  Google Scholar 

  51. Uddin S, Behbehani M (2018) Concentrations of selected radionuclides and their spatial distribution in marine sediments from the north-western Gulf, Kuwait. Mar Pollut Bull 127:73–81

    Article  CAS  PubMed  Google Scholar 

  52. El-Taher A, Alshahri F, Elsamana R (2018) Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf. Appl Radiat Isot 132:95–104

    Article  CAS  PubMed  Google Scholar 

  53. González-Fernández D, Garrido-Pérez MC, Casas-Ruiz M, Barbero L, Nebot-Sanz E (2012) Radiological risk assessment of naturally occurring radioactive materials in marine sediments and its application in industrialized coastal areas: Bay of Algeciras. Spain Environ Earth Sci 66:1175

    Article  CAS  Google Scholar 

  54. Kritsananuwat R, Sahoo SK, Fukushi M, Pangza K, Chanyotha S (2015) Radiological risk assessment of 238U, 232Th and 40K in Thailand coastal sediments at selected areas proposed for nuclear power plant sites. J Radioanal Nucl Chem 303:325–334

    Article  CAS  Google Scholar 

  55. Alfonso JA, Pe’rez K, Palacios D, Handt H, LaBrecque JJ, Mora A, Va’squez Y (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J. Radioanal Nucl Chem 300:219–224

    Article  CAS  Google Scholar 

  56. Ergül HA, Belivermis M, Kılıç Ö, Topcuoglu S, Çotuk Y (2013) Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J Environ Radioact 126:125–132

    Article  PubMed  CAS  Google Scholar 

  57. Sac MM, Ortabuk F, Kumru MN, Ichedef M, Sert S (2012) Determination of radioactivity and heavy metals of Bakircay river in Western Turkey. Appl Radiat Isot 70:2494–2499

    Article  CAS  PubMed  Google Scholar 

  58. Akozcan S (2012) Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey). J Environ Radioact 112:60–63

    Article  CAS  PubMed  Google Scholar 

  59. Kurnaz A, Küçükömeroglu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  PubMed  Google Scholar 

  60. Karataslı M, Turhan S, Varinlioglu A, Yegingil Z (2016) Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ Earth Sci 75:424

    Article  CAS  Google Scholar 

  61. Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice Lagoon: the roleof the industrial area. Sci Total Environ 295:35–49

    Article  CAS  PubMed  Google Scholar 

  62. Taher AG (2001) Geochemistry of recent marine sediments in the Bardawil lagoon, northern Sinai. Egypt Hydrobiol 457:5–16

    Article  CAS  Google Scholar 

  63. Tornero V, Arias AM, Blasco J (2014) Trace element contamination in the Gua-dalquivir River Estuary ten years after the Aznalcollar mine spill. Mar Pollut Bull 86:349–360

    Article  CAS  PubMed  Google Scholar 

  64. Maanan M, Saddik M, Maanan M, Chaidi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon. Morocco Ecol Indic 48:616–626

    Article  CAS  Google Scholar 

  65. Accornero A, Gnerre R, Manfra L (2008) Sediment concentrations of trace metals in the Berre Lagoon (France): an assessment of contamination. Arch Environ Con Tox 54:372–385

    Article  CAS  Google Scholar 

  66. Ozmen SF (2017) Natural and artificial gama radioactivity measurements and construction of radioactivity maps of mersin. PhD Thesis, institute of science and technology, University of Akdeniz (in Turkish)

  67. Akozcan S, Ugur Gorgun A (2013) Trace metal and radionuclide pollution in marine of the Aegean Sea (Izmir Bay and Didim). Environ Earth Sci 69:2351–2355

    Article  CAS  Google Scholar 

  68. Küçüksegin F, Kontas A, Uluturhan E (2011) Evaluations of heavy metal pollution in sediment and Mullus barbatus from the Izmir Bay (Eastern Aegean) during 1997–2009. Mar Pollut Bull 62:1562–1571

    Article  CAS  Google Scholar 

  69. Pekey H (2006) Heavy metal pollution assessment in sediments of the Izmit Bay. Turk Environ Monit Assess 123:219–231

    Article  CAS  Google Scholar 

  70. Sarı E, Cagatay MN (2001) Distributions of heavy metals in the surface sediments of Gulf of Saros, NE Aegean Sea. Environ Inter 26:169–173

    Article  Google Scholar 

  71. Uluturhan E, Kontas A, Can E (2011) Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Mar Pollut Bull 62:1989–1997

    Article  CAS  PubMed  Google Scholar 

  72. Ozbay O, Goksu MZL, Alp MT, Sungur MA (2013) Berdan Çayı (Tarsus - Mersin) Sedimentinde Ağır Metal Düzeylerinin Araştırılması. Ekoloji 22(86):68–74

    Article  CAS  Google Scholar 

  73. Balkıs N (1988) Geochemistry of sediments of the Erdek Bay. PhD Thesis, institute of marine sciences and management, University of Istanbul (in Turkish)

  74. United States Environmental Protection Agency (USEPA) (2000) Prediction of sediment toxicity using consensus-based fresh water sediment quality guidelines, Epa 905/R-00/007, June 2000

  75. Australian and New Zealand Environment and Conservation Council (ANZECC) (2000) Aquatic ecosystems—rationale and background information, national water quality management strategy, Paper No 4. Vol.2, Chapter 8

  76. Ontario ministry of environment and energy (OMEE) (1993) guidelines for the protection and management of aquatic sediment quality in Ontario. Ministry Of environment and energy, ISBN0-7778-9248-7

  77. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guideline for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  PubMed  Google Scholar 

  78. Calvert SE, Mukherjee S, Morris RJ (1985) Trace metals in fulvic and humic acids from modern organic rich sediments. Oceanol Acta 8:167–173

    CAS  Google Scholar 

  79. Pruysers PA, de Lange GJ, Middelburg JJ (1991) Geochemistry of eastern Mediterranean sediments: primary sediment composition and diagenetic alterations. Mar Geol 100:137–154

    Article  CAS  Google Scholar 

  80. Salomons W, Fostner U (1984) Metals in the hydrocycle. Springer, Berlin, p 349

    Book  Google Scholar 

  81. Loder TC, Liss PS (1985) Control by organic coatings of the surface charge of estuarine suspended particles. Limnol Oceanogr 30:418–421

    Article  CAS  Google Scholar 

  82. Wangersky PJ (1986) Biological control of trace metal residue time and speciation: a review and synthesis. Mar Chem 18:269–297

    Article  CAS  Google Scholar 

  83. Haraldsson C, Westerlund S (1991) Total and suspended cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in the water column of the Black Sea. Paper presented at Black Sea Oceanography pp. 161–172. Dordrecht: Kluwer

  84. Kontas A (2008) Trace metals (Cu, Mn, Ni, Zn, Fe) contamination in marine sediment and zooplankton samples from Izmir Bay. (Aegean Sea, Turkey). Water Air Soil Pollut 188:323–333

    Article  CAS  Google Scholar 

  85. Birth G (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments, In: Coastal GIS, Woodcoffe CD, Furness RA, (eds) Wollongong University Papers in Center for Maritime Policy, 14, Australia

Download references

Acknowledgements

The author thanks to Prof. Dr. İsmail BOZTOSUN for providing gamma spectrums of samples, to Nebil YÜCEL and Zahid UYSAL for their contribution and assistance in sampling, to Ercument AKSOY and Olgaç GUVEN for mapping, to Bülent TOPÇUOĞLU and Batı Akdeniz Agricultural Research Institute for TOM, texture and trace metal analysis, to Günseli YAPRAK, Mesut YILMAZ and Mustafa YAVUZ for valuable suggestions. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Fatih OZMEN.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OZMEN, S.F. Ecological assesment of Akkuyu nuclear power plant site marine sediments in terms of radionuclide and metal accumulation. J Radioanal Nucl Chem 325, 133–145 (2020). https://doi.org/10.1007/s10967-020-07201-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07201-w

Keywords

Navigation