Skip to main content
Log in

Fuzzy Hypercubes and their time-like evolution

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The concept of Fuzzy Hypercube is defined as a simple trigonometric extension of the binary structure of an N-dimensional Boolean hypercube. Moreover, in the present study, there is a discussion on the possibility of defining Fuzzy Hypercubes as a set of \( 2^{N} \) vertices, which remain Stationary or might undergo Synchronous or Asynchronous evolution. Finally, the connection of Fuzzy Hypercubes with multivariate discrete probability distributions is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Such a time-dependent probability choice looks like a not so common situation. In a bivariate case would appear as if a coin toss probability could evolve with each observation, which is not a usual studied phenomenon. However, it appears very similar to the possible evolution of a quantum spin system.

References

  1. K. Balasubramanian, J. Math. Chem. 56, 2707–2723 (2018)

    Article  CAS  Google Scholar 

  2. K. Balasubramanian, J. Math. Chem. 57, 665–689 (2019)

    Article  Google Scholar 

  3. R. Carbó-Dorca, J. Math. Chem. 22, 143–147 (1997)

    Article  Google Scholar 

  4. R. Carbó, B. Calabuig, Molecular similarity and quantum chemistry, in Concepts and Applications of Molecular Similarity, ed. by M.A. Johnson, G.M. Maggiora (Wiley, New York, 1990), pp. 147–171

    Google Scholar 

  5. R. Carbó, B. Calabuig, Intl. J. Quant. Chem. 42, 1695–1709 (1992)

    Article  Google Scholar 

  6. R. Carbó-Dorca, J. Math. Chem. 54, 1213–1220 (2016)

    Article  Google Scholar 

  7. R. Carbó-Dorca, J. Math. Chem. 55, 914–940 (2017)

    Article  Google Scholar 

  8. R. Carbó-Dorca, J. Math. Chem. 56, 1349–1352 (2018)

    Article  Google Scholar 

  9. R. Carbó-Dorca, J. Math. Chem. 56, 1353–1356 (2018)

    Article  Google Scholar 

  10. R. Carbó-Dorca, J. Math. Sci. Model. (JMSM) 1, 1–14 (2018)

    Google Scholar 

  11. R. Carbó-Dorca, J. Math. Chem. 57, 694–696 (2019)

    Article  Google Scholar 

  12. R. Carbó-Dorca, J. Math. Chem. 57, 697–700 (2019)

    Article  Google Scholar 

  13. R. Carbó-Dorca, T. Chakraborty, J. Comput. Chem. 40, 2653 (2019)

    Article  Google Scholar 

  14. R. Carbó-Dorca, T. Chakraborty, J. Math. Chem. 57, 2182–2194 (2019)

    Article  Google Scholar 

  15. R. Carbó-Dorca, J. Math. Chem. 58, 1–5 (2020)

    Article  Google Scholar 

  16. L. Cardelli, M. Kwiatkowska, M. Whitby, Nat. Comput. 17, 109–130 (2018)

    Article  CAS  Google Scholar 

  17. J. Olejarz, K. Kaveh, C. Veller, M.A. Novak, J. Theor. Biol. 457, 170–179 (2018)

    Article  Google Scholar 

  18. R. Carbó-Dorca, J. Math. Chem. 30, 227–245 (2001)

    Article  Google Scholar 

  19. R. Carbó-Dorca, J. Math. Chem. 36, 75–81 (2004)

    Article  Google Scholar 

  20. R. Carbó-Dorca, J. Math. Chem. 54, 1751–1757 (2016)

    Article  Google Scholar 

  21. R. Carbó-Dorca, C. Muñoz-Caro, A. Niño, S. Reyes, J. Math. Chem. 55, 1869–1877 (2017)

    Article  Google Scholar 

  22. S. Kais (ed.), Quantum Information and Computation for Chemistry (Advances in Chemical Physics, vol. 54), S.A. Rice, A.R. Dinner (Series Editors) (2014)

  23. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, Ch. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, Ch. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao, P. Yeh, A. Zalcman, H. Neven, J.M. Martinis, Nature 574, 505–511 (2019)

    Article  CAS  Google Scholar 

  24. E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, R. Wisnieff. arxiv preprint, arXiv:1910.09534 v2 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Carbó-Dorca.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Carbó-Dorca, R. Fuzzy Hypercubes and their time-like evolution. J Math Chem 58, 1337–1344 (2020). https://doi.org/10.1007/s10910-020-01137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01137-y

Keywords

Navigation