Skip to main content
Log in

In Vivo Assessment of the Effect of Hexagonal Boron Nitride Nanoparticles on Biochemical, Histopathological, Oxidant and Antioxidant Status

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The aim of our study is to investigate the dose-dependent biological system effect of hexagonal boron nitride (hBN) nanoparticles, which is directly produced nanoscale, in vivo. Wistar albino rats (n = 80) weighing 200–250 g were divided into eight groups (n = 10). The acute effects of hBN NPs (i.v) on the rats were investigated by measuring the biochemical, hematological parameters and oxidant-antioxidant status. The results show that no significant change was observed in the hematological and biochemical parameters when the control group and other low dose groups were compared, except for the 1600 and 3200 µg/kg b.w. dose groups. Histological detection indicated that 1600 and 3200 µg/kg hBN NPs treatment could induce significant damage in the liver, kidney, heart, spleen and pancreas. With the findings obtained, it can be seen that hBN NPs cannot be evaluated independently of particle morphology, and that the hBN NPs used in this study may be suitable for biomedical applications where low doses between 50 and 800 µg/kg are not toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. M. Cho, Y. Mizuta, J. I. Akagi, T. Toyoda, M. Sone, and K. Ogawa (2018). Size-dependent acute toxicity of silver nanoparticles in mice. J. Toxicol. Pathol. 31, (1), 73–80.

    Article  CAS  Google Scholar 

  2. K. Chan, H. M. Wong, K. W. K. Yeung, and S. C. Tjong (2015). Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials 8, 992–1008.

    Article  CAS  Google Scholar 

  3. M. Kıvanç, B. Barutca, A. T. Koparal, Y. Göncü, S. H. Bostancı, and N. Ay (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater. Sci. Eng. C 91, 15–124.

    Article  Google Scholar 

  4. T. Selvaraj, A. Thirunavukkarasu, S. M. Rathnavelu, and G. Kasivelu (2019). In Vivo Non-toxicity of Gold Nanoparticles on Wistar Rats. J. Cluster Sci. 30, (2), 513–519.

    Article  CAS  Google Scholar 

  5. A. Lipp, K. A. Schwetz, and K. Hunold (1989). Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5, 3–9.

    Article  CAS  Google Scholar 

  6. A. W. Weimer and A. W. Carbide Nitride and Boride Materials Synthesis and Processing (Chapman & Hall, London, 1997).

    Book  Google Scholar 

  7. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, and C. R. Bertozzi (2009). Boron nitride nanotubes are noncytotoxic can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891.

    Article  CAS  Google Scholar 

  8. G. Ciofani, V. Raffa, A. Menciassi, and P. Dario (2008). Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J. Nanosci. Nanotechnol. 8, 6223–6231.

    Article  CAS  Google Scholar 

  9. G. Ciofani, V. Raffa, A. Menciassi, and A. Cuschieri (2008). Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101, 850–858.

    Article  CAS  Google Scholar 

  10. T. H. Ferreira, L. M. Hollanda, M. Lancellotti, and E. M. de Sousa (2015). Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J. Biomed. Mater. Res. A 103, 2176–2185.

    Article  CAS  Google Scholar 

  11. G. Ciofani (2010). Potential applications of boron nitride nanotubes as drug delivery systems. Expert Opin. Drug Deliv. 7, 889–893.

    Article  CAS  Google Scholar 

  12. G. Ciofani, G. G. Genchi, A. Athanassiou, D. Dinucci, F. Chiellini, and V. Mattoli (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 364, 308–314.

    Article  Google Scholar 

  13. S. Del Turco, G. Ciofani, V. Cappello, M. Gemmi, T. Cervelli, C. Saponaro, S. Nitti, B. Mazzolai, G. Basta, and V. Mattoli (2013). Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf. B Biointerfaces. 111, 142–149.

    Article  Google Scholar 

  14. D. Lahiri, F. Rouzaud, T. Richard, A. K. Keshri, S. R. Bakshi, L. Kos, and A. Agarwal (2010). Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524–3533.

    Article  CAS  Google Scholar 

  15. D. Lahiri, V. Singh, A. P. Benaduce, S. Seal, L. Kos, and A. Agarwal (2011). Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 4, 44–56.

    Article  CAS  Google Scholar 

  16. M. Fischnaller, R. Köck, R. Bakry, and G. K. Bonn (2014). Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride. Anal. Chim. Acta 823, 40–50.

    Article  CAS  Google Scholar 

  17. M. A. I. Rasel, T. Li, T. D. Nguyen, S. Singh, Y. Zhou, Y. Xiao, and Y. Gu (2015). Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization. J. Nanoparticle Res. 17, (11), 441.

    Article  Google Scholar 

  18. T. Lu, L. Wang, Y. Jiang, and C. Huang (2016). Hexagonal boron nitride nanoplates as emerging biological nanovectors and their potential applications in biomedicine. J. Mater. Chem. B. 4, (36), 6103–6110.

    Article  CAS  Google Scholar 

  19. B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, A. Singh, A. Thakur, and A. Kumar (2016). Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Sci. Rep. 6, 35535.

    Article  CAS  Google Scholar 

  20. B. Liu, W. Qi, L. Tian, Z. Li, G. Miao, W. An, D. Liu, J. Lin, X. Zhang, and W. Wu (2015). In vivo biodistribution and toxicity of highly soluble PEG-coated boron nitride in mice. Nanoscale Res. Lett. 10, (1), 478.

    Article  Google Scholar 

  21. W. An, B. Han, K. Li, S. Akhtar, Y. Zhang, X. Zhang, X. Sha, and L. Gao (2017). The protective study about alleviation of simvastatin on the damages of PEG-BNs in mice. Environ. Toxicol. Pharmacol. 53, 64–73.

    Article  CAS  Google Scholar 

  22. X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S. T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei, and J. Shi (2018). A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 30, (36), 1803031.

    Article  Google Scholar 

  23. I. Khan, K. Saeed, and I. Khan (2017). Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931.

    Article  Google Scholar 

  24. P. P. Fu, Q. Xia, H. M. Hwang, P. C. Ray, and H. Yu (2014). Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of food and drug analysis. 22, (1), 64–75.

    Article  CAS  Google Scholar 

  25. L. H. Li, A. M. Glushenkov, S. K. Hait, P. Hodgson, and Y. Chen (2014). High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 7288.

    PubMed  PubMed Central  Google Scholar 

  26. S. Namba, A. Takagaki, K. Jimura, S. Hayashi, R. Kikuchi, and S. T. Oyama (2019). Effects of ball-milling treatment on physicochemical properties and solid base activity of hexagonal boron nitrides. Catal. Sci. Technol. 9, (2), 302–309.

    Article  CAS  Google Scholar 

  27. Y. Göncü, The effect of milling on hexagonal boron nitride powder properties, Anadolu University, Graduate School of Sciences, Department of Ceramic Engineering, Ph.D Thesis (2012), pp. 1–168

  28. S. Mateti, C. S. Wong, Z. Liu, W. Yang, Y. Li, L. H. Li, and Y. Chen (2018). Biocompatibility of boron nitride nanosheets. Nano Res. 11, (1), 334–342.

    Article  CAS  Google Scholar 

  29. İ. Söğüt, A. Ş. Aydın, E. S. Gökmen, P. G. Atak, Ö. Erel, and U. G. DeGrigo (2018). Evaluation of oxidative stress and thiol-disulfide parameters according to the body mass ındex in adult ındividuals. Erciyes Med. J. 40, (3), 155–161.

    Article  Google Scholar 

  30. H. Okhawa, N. Ohishi, and K. Yagi (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95, 351–358.

    Article  Google Scholar 

  31. M. M. Bradford (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  32. V. Kumar, N. Sharma, and S. S. Maitra (2017). In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 7, (4), 243–256.

    Article  CAS  Google Scholar 

  33. A. Atila, Z. Halici, E. Cadirci, E. Karakus, S. S. Palabiyik, N. Ay, F. Bakan, and S. Yilmaz (2016). Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs. Mater. Sci. Eng.: C. 58, 1082–1089.

    Article  CAS  Google Scholar 

  34. G. Ciofani, S. Danti, S. Nitti, B. B. Mazzolai, V. Mattolai, and M. Giorgi (2013). Biocompatibility of boron nitride nanotubes: an up-date of in vivo toxicological investigation. Int. J. Pharm. 444, 85–88.

    Article  CAS  Google Scholar 

  35. T. S. Hauck, R. E. Anderson, H. C. Fischer, S. Newbigging, and W. C. Chan (2010). In vivo quantum-dot toxicity assessment. Small 6, (1), 138–144.

    Article  CAS  Google Scholar 

  36. J. Xu, H. Shi, M. Ruth, H. Yu, L. Lazar, B. Zou, and J. Zhao (2013). Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PloS ONE 8, (8), e70618.

    Article  CAS  Google Scholar 

  37. R. R. Magaye, X. Yue, B. Zou, H. Shi, H. Yu, K. Liu, and J. Zhao (2014). Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int. J. Nanomed. 9, 1393.

    Google Scholar 

  38. J. N. Tiwari, R. N. Tiwari, and K. S. Kim (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progr. Mater. Sci. 57, (4), 724–803.

    Article  CAS  Google Scholar 

  39. N. Wang, H. Wang, C. Tang, S. Lei, W. Shen, C. Wang, G. Wang, Z. Wang, and L. Wang (2017). Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans. Int. J. Nanomed. 12, 5941–5957.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Eskişehir Technical University Scientific Research Projects Commission. (Project No: 19ADP163). The authors would like to thank BORTEK Boron Technologies and Mechatronic Inc. for their material support and Dr. Umut SAVACI for his help to use Transmission Electron Microscopy (TEM) (Eskisehir Technical University, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study was approved by the Committee of Local Ethics Committee of Eskişehir Osmangazi University Animal Experiments (ESOGU HADYEK) (Decision No: 662-1 of 20.02.2019).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, F., Hacıoğlu, C., Göncü, Y. et al. In Vivo Assessment of the Effect of Hexagonal Boron Nitride Nanoparticles on Biochemical, Histopathological, Oxidant and Antioxidant Status. J Clust Sci 32, 517–529 (2021). https://doi.org/10.1007/s10876-020-01811-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01811-w

Keywords

Navigation