Skip to main content
Log in

Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures

时效温度对Al-Li-S4 合金的蠕变行为和力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Creep age forming techniques have been widely used in aerospace industries. In this study, we investigated the effect of aging temperature (143 °C–163 °C) on the creep behavior of Al-Li-S4 aluminum alloy and their mechanical properties at room temperature. The mechanical properties were tested by tensile testing, and the microstructural evolution at different aging temperatures was examined by transmission electron microscopy. Results show that the creep strains and the room-temperature mechanical properties after creep aging increase with the aging temperature. As the aging temperature increases, the creep strain increases from 0.018% at 143 °C to 0.058% at 153 °C, and then to 0.094% at 163 °C. Within 25 h aging, the number of creep steps increases and the duration time of the same steps is shortened with the growth of aging temperatures. Therefore, the increase in aging temperatures accelerates the progress of the entire creep. Two main strengthening precipitates θ′ (Al2Cu) and T1 (Al2CuLi) phases were characterized. This work indicates that the creep strain and mechanical properties of Al-Li-S4 alloys can be improved by controlling aging temperatures.

摘要

蠕变时效成形技术已经在航空航天领域得到了广泛的应用. 本文研究了时效温度(143 °C-163 °C)对Al-Li-S4 合金的蠕变行为和室温力学性能的影响.进行了力学性能拉伸测试和透射电镜下微 观结构表征实验, 结果表明: 时效温度的升高,使得蠕变量及其对应的室温力学性能都会增加, 具体 表现为蠕变量从143 °C 时的0.018%增加到153 °C 时的0.058%,进一步增加到163 °C 时的0.094%. 在时效的25 h 内, 温度的升高使得蠕变阶段的数量增加, 而对应的蠕变阶段保持的时间缩短. 因此, 时效温度的升高加速了蠕变时效进程. 同时, 对两种主要的强化相, θ′ (Al2Cu)相和T1(Al2CuLi)相进 行了表征. 研究表明, 通过调控时效温度. 可以获得Al-Li-S4 合金的蠕变量和力学性能的改善.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHENG Zi-qiao, LI Jin-feng, CHEN Zhi-guo, LI Hong-ying, LI Shi-chen, TAN Chen-yu. Alloying and microstructural evolution of Al-Li alloys [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2237–2351. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.9.2011.10.004. (in Chinese)

    Article  Google Scholar 

  2. YOSHIMURA R, J. KONNA T, ABE E J, HIRAGA K J. Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: the θ’ and T1 phases [J]. Acta Materialia, 2003, 51: 4251–4266. DOI: https://doi.org/10.1016/S1359-6454(03)00253-2.

    Article  Google Scholar 

  3. DENG Yan-jun, HUANG Guang-jie, CAO Ling-fei, WU Xiao-dong, HUANG Li. Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy [J]. Journal of Central South University, 2018, 25: 1340–1349. DOI: https://doi.org/10.1007/s11771-018-3830-8.

    Article  Google Scholar 

  4. NOBLE B, THOMPSON G E. Precipitation characteristics of aluminium-lithium alloys [J]. Metal Science, 1971, 5(1): 114–120. DOI: https://doi.org/10.1179/030634571790439333.

    Article  Google Scholar 

  5. WILLIAMS D B, EDINGTON J W. The precipitation of δ′ (Al3Li) in dilute aluminium-lithium alloys [J]. Metal Science, 1975, 9(1): 529–532. DOI: https://doi.org/10.1179/030634575790445143.

    Article  Google Scholar 

  6. LI Xi-cai, ZHAN Li-hua. Unified constitutive modeling of creep aging behavior of AA2219 based on interaction of creep and aging interactive mechanism [J]. Journal of Central South University, 2017, 48(11): 2942–2948. DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.11.014.

    Google Scholar 

  7. STARKE JR E A, STALEY J T. Application of modern aluminum alloys to aircraft [J]. Woodhead Publishing Series in Metals and Surface Engineering, 1966, 32(2, 3): 131–172. DOI: https://doi.org/10.1533/9780857090256.3.747.

    Google Scholar 

  8. ZHAN Li-hua, LIN Jian-guo, DEAN T A. A review of the development of creep age forming: Experimentation, modelling and applications [J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 1–7. DOI: https://doi.org/10.1016/j.ijmachtools.2010.08.007.

    Article  Google Scholar 

  9. ZENG Gang, LIU Chu-ming, WANG Ying-chun, GAO Yong-hao, JING Shu-nong, CHEN Zhi-yong. Effects of aging temperature on microstructure, tensile and creep properties of ring rolled AZ80-Ag alloy [J]. Materials Science and Engineering A, 2018, 734: 59–66. DOI: https://doi.org/10.1016/j.msea.2018.07.061.

    Article  Google Scholar 

  10. ZHANG Long, HE Hong, LI Shi-kang, WU Xiao-dong, LI Luo-xing. Dynamic compression behavior of 6005 aluminum alloy aged at elevated temperatures [J]. Vacuum, 2018, 155: 604–611. DOI: https://doi.org/10.1016/j.vacuum.2018.06.066.

    Article  Google Scholar 

  11. HU Li-bin, ZHAN Li-hua, SHEN Ru-lin, LIU Zhi-lin, MA Zi-yao, LIU Jian, YANG Yin-ge. Effects of uniaxial creep ageing on the mechanical properties and microprecipitates of Al-Li-S4 alloy [J]. Materials Science and Engineering A, 2017, 668: 272–279. DOI: https://doi.org/10.1016/j.msea.2017.01.081.

    Article  Google Scholar 

  12. LI H Y, KANG W, LU X C. Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li alloy [J]. Journal of Alloys and Compounds, 2015, 640: 210–218. DOI: https://doi.org/10.10116/j.jallcom.2015.03.212.

    Article  Google Scholar 

  13. ZHANG Jin, WANG Cheng, ZHANG Yong, DENG Yun-lai. Effects of creep aging upon Al-Cu-Li alloy: Strength, toughness and microstructure [J]. Journal of Alloys and Compounds, 2018, 764: 452–459. DOI: https://doi.org/10.1016/j.jallcom.2018.06.103.

    Article  Google Scholar 

  14. LI Y, SHI Z, LIN J, YANG Y L, HAUNG B M, CHUNG T F, YNAG J R. Experimental investigation of tension and compression creep-ageing behavior of AA2050 with different initial tempers [J]. Materials Science and Engineering A, 2016, 657: 299–308. DOI: https://doi.org/10.1016/j.msea.2016.01.074.

    Article  Google Scholar 

  15. HU Li-bin, ZHAN Li-hua, LIU Zhi-lin, SHEN Ru-lin, YANG You-liang, MA Zi-yao, LIU Ming, LIU Jian, YANG Ying-ge, WANG Xun. The effects of pre-deformation on the creep aging behavior and mechanical properties of Al-Li-S4 alloys [J]. Materials Science and Engineering A, 2017, 703: 496–502. DOI: https://doi.org/10.1016/j.msea.2017.07.068.

    Article  Google Scholar 

  16. DESCHAMPS A, DECREUS B, De GEUSER F, DORIN T, WEYLAND M. The influence of precipitation on plastic deformation of Al-Cu-Li alloys [J]. Acta Materialia, 2013, 61: 4010–4021. DOI: https://doi.org/10.1016/j.actamat.2013.03.015.

    Article  Google Scholar 

  17. CASSADA W A, SHIFLET G J, STARKE JR E A. Electron diffraction studies of Al2CuLi [T1] plates in an Al-2.4Li-2.4Cu-0.18Zr alloy [J]. Scripta Metallurgice, 1987, 21: 387–392. DOI: https://doi.org/10.1016/0036-9748(87)90234-1.

    Article  Google Scholar 

  18. ZHANG Sai-fei, ZENG Wei-dong, YANG Wen-hua, SHI Chun-ling, WANG Hao-jun. Ageing response of a Al-Cu-Li 2198 alloy [J]. Materials and Design, 2014, 63: 368–374. DOI: https://doi.org/10.1016/j.matdes.2014.04.063.

    Article  Google Scholar 

  19. DESCHAMPS A, GARCIA M, CHEVY J, DAVO B, De GEUSER F. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Materialia, 2017, 122: 32–46. DOI: https://doi.org/10.1016/j.actamat.2016.09.036.

    Article  Google Scholar 

  20. HIROSAWA S, SATO T, KAMIO A. Effects of Mg addition on the kinetics of low-temperature precipitation in Al-Li-Cu-Ag-Zr alloys [J]. Materials Science and Engineering A, 1998, 242: 195–201. DOI: https://doi.org/10.1016/S0921-5093(97)00530-3.

    Article  Google Scholar 

  21. GABLE B M, ZHUA W, CSONTOS A, STARKE E A Jr. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. Journal of Light Metals, 2001, 1: 1–14. DOI: https://doi.org/10.1016/S1471-5317(00)00002-X.

    Article  Google Scholar 

  22. MA Pei-pei, ZHAN Li-hua, LIU Chun-hui, WANG Qing, LI He, LIU De-bo, HU Zheng-gen. Pre-strain -dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy [J]. Materials Science and Engineering A, 2019, 790: 8–19. DOI: https://doi.org/10.1016/j.jallcom.2019.03.072.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-hua Zhan  (湛利华) or Xing Zhao  (赵兴).

Additional information

Foundation item: Project(2017YFB0306300) supported by National key R&D Program of China; Project(zzyikt2015-05) supported by the Project of State Key Laboratory of High Performance Complex Manufacture, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zhan, Lh., Shen, Rl. et al. Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures. J. Cent. South Univ. 27, 1168–1175 (2020). https://doi.org/10.1007/s11771-020-4357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4357-3

Key words

关键词

Navigation