Skip to main content
Log in

A review of underlying topography estimation over forest areas by InSAR: Theory, advances, challenges and perspectives

InSAR 林下地形测绘方法:理论、进展、挑战与前景

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The paramount importance and multi-purpose applications of underlying topography over forest areas have gained widespread recognition over recent decades, bringing about a variety of experimental studies on accurate underlying topography mapping. The highly spatial and temporal dynamics of forest scenarios makes traditional measuring techniques difficult to construct the precise underlying topography surface. Microwave remote sensing has been demonstrated as a promising technique to retrieve the underlying topography over large areas within a limited period, including synthetic aperture radar interferometry (InSAR), polarimetric InSAR (PolInSAR) and tomographic SAR (TomoSAR). In this paper, firstly, the main principle of digital elevation model (DEM) generation by InSAR and SAR data acquisition over forest area are introduced. Following that, several methods of underlying topography extraction based on InSAR, PolInSAR, and TomoSAR are introduced and analyzed, as well as their applications and performance are discussed afterwards. Finally, four aspects of challenge are highlighted, including SAR data acquisition, error compensation and correction, scattering model reconstruction and solution strategy of multi-source data, which needs to be further addressed for robust underlying topography estimation.

摘要

近几十年来,森林覆盖区林下地形的重要意义与应用已得到广泛认可,许多学者对此开展了大 量高精度林下地形绘图的研究。然而,森林场景的高时空动态性使得传统的测量技术难以重建精确的 林下地形。微波遥感为林下地形测绘带来了契机,其能在有限的时间内大范围提取、重建林下地形, 其中包括合成孔径雷达干涉测量(InSAR) , 极化合成孔径雷达干涉测量(PolInSAR) 和层析 SAR(TomoSAR)。本文首先介绍了基于InSAR 生成数字高程模型(DEM)的主要原理以及森林区域SAR 数据的获取。随后,综合分析了基于InSAR,PolInSAR 和TomoSAR 的林下地形提取方法,并讨论其 相关的应用及反演性能。最后,重点介绍了未来高精度林下地形测绘所面临的四个方面的挑战,包括 SAR 数据采集,误差补偿和校正,散射模型重建与解译以及多源数据融合的解决方案与策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. SUN Qian, ZHANG Lei, DING Xiao-li, HU Jun, LI Zhi-wei, ZHU Jian-jun. Slope deformation prior to Zhouqu, China landslide from Insar time series analysis [J]. Remote Sensing of Environment, 2015, 156: 45–57. DOI: https://doi.org/10.1016/j.rse.2014.09.029.

    Article  Google Scholar 

  2. BAUGH C A, BATES P D, SCHUMANN G, TRIGG M A. SRTM vegetation removal and hydrodynamic modeling accuracy [J]. Water Resources Research, 2013, 49(9): 5276–5289. DOI: https://doi.org/10.1002/wrcr.20412.

    Article  Google Scholar 

  3. FU Hai-qiang. Method development of InSAR/PolInSAR sub-canopy topography and forest height inversion taking into account trend error correction and observation information enhancement [D]. Changsha: Central South University 2018. (in Chinese)

    Google Scholar 

  4. RABUS B, EINEDER M, ROTH A, BAMLER R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 241–262. DOI: https://doi.org/10.1016/S0924-2716(02)00124-7.

    Article  Google Scholar 

  5. ROSSI C, GONZALEZ F R, FRITZ T, YAGUEMARTINEZ N, EINEDER M. TanDEM-X calibrated raw DEM generation [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 12–20. DOI: https://doi.org/10.1016/j.isprsjprs.2012.05.014.

    Article  Google Scholar 

  6. TREUHAFT R N, MADSEN S N, MOGHADDAM M, VAN ZYL J J. Vegetation characteristics and underlying topography from interferometric radar [J]. Radio Science, 1996, 31(6): 1449–1485. DOI: https://doi.org/10.1029/96rs01763.

    Article  Google Scholar 

  7. TREUHAFT R N, SIQUEIRA P. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar [J]. Radio Science, 2000, 35(1): 141–178. DOI: https://doi.org/10.1029/1999rs900108.

    Article  Google Scholar 

  8. CLOUDE S R, PAPATHANASSIOU K P. Polarimetric SAR interferometry [J]. IEEE Transactions on Geosciences and Remote Sensing, 1998, 36(5): 1551–1565. DOI: https://doi.org/10.1109/36.718859.

    Article  Google Scholar 

  9. O’LOUGHLIN F E, PAIVA P C D, DURAND M, ALSDORF D E, BATES P D. A multi-sensor approach towards a global vegetation corrected SRTM DEM product [J]. Remote Sensing of Environment, 2015, 182: 49–59. DOI: https://doi.org/10.1016/j.rse.2016.04.018.

    Article  Google Scholar 

  10. GARESTIER F, DUBOIS-FERNANDEZ P, CHAMPION I. Forest height inversion using high-resolution P-band Pol-InSAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3544–3559. DOI: https://doi.org/10.1109/tgrs.2008.922032.

    Article  Google Scholar 

  11. FU Hai-qiang, ZHU Jian-jun, WANG Chang-cheng, WANG Hui-qiang, ZHAO Rong. Underlying topography estimation over forest areas using high-resolution P-band singlebaseline PolInSAR data [J]. Remote Sensing, 2017, 363(9): 1–17. DOI: https://doi.org/10.3390/rs9040363.

    Google Scholar 

  12. LI Xin-wu, GUO Hua-dong, WANG Chang-lin, LI Zhen, LIAO Jing-juan. DEM generation in the densely vegetated area of Hotan, north-west China using SIR-C repeat pass polarimetric SAR interferometry [J]. International Journal of Remote Sensing, 2003, 24(14): 2997–3003. DOI: https://doi.org/10.1080/0143116031000094773.

    Article  Google Scholar 

  13. HUA Fen-fen, ZHAO Zheng, WANG Meng-meng, ZHANG Ji-xian, HUANG Guo-man. A global optimal coherence method for multi-baseline InSAR elevation inversion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1263–1270. DOI: https://doi.org/10.11947/j.AGCS.2015.20140694.

    Google Scholar 

  14. LOPEZ-MARTINEZ C, PAPATHANASSIOU K P. Cancellation of scattering mechanisms in PolInSAR: Application to underlying topography estimation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 953–965. DOI: https://doi.org/10.1109/TGRS.2012.2205157.

    Article  Google Scholar 

  15. PAPATHANASSIOU K P, CLOUDE S R. Single-baseline polarimetric SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352–2363. DOI: https://doi.org/10.1109/36.964971.

    Article  Google Scholar 

  16. CLOUDE S R. Polarisation: Applications in remote sensing [M]. London, UK: Oxford University Press 2009.

    Book  Google Scholar 

  17. BALLESTER-BERMAN J, LOPEZ-SANCHEZ J. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, (48)1: 466–479. DOI: https://doi.org/10.1109/TGRS.2009.2024304.

    Article  Google Scholar 

  18. NEUMANN M, FERRO-FAMIL L, REIGBER A. Estimation of forest structure, ground and canopy layer characteristics from multi-baseline polarimetric interferometric SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1086–1104. DOI: https://doi.org/10.1109/TGRS.2009.2031101.

    Article  Google Scholar 

  19. REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: https://doi.org/10.1109/36.868873.

    Article  Google Scholar 

  20. BAMLER R, HARTL P. Synthetic aperture radar interferometry [J]. Inverse Problems, 1998, 14(4): 333–382. DOI: https://doi.org/10.1016/0045-8732(91)90094-O.

    Article  MathSciNet  MATH  Google Scholar 

  21. GARESTIER F, DUBOIS-FERNANDEZ P, CHAMPION I, TOAN T L. Pine forest investigation using high resolution P-band Pol-InSAR data [J]. Remote Sensing of Environment, 2011, 115(11): 2897–2905. DOI: https://doi.org/10.1016/j.rse.2010.08.028.

    Article  Google Scholar 

  22. DUBOIS-FERNANDEZ P, TOAN L T, DANIEL S, ORIOT H, CHAVE J, BLANC L, VILLARD L, DAVIDSON W J M, PETIT M. The TropiSAR airborne campaign in French Guiana: Objectives, description and observed temporal behavior of the backscatter signal [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3228–3241. DOI: https://doi.org/10.1109/TGRS.2011.2180728.

    Article  Google Scholar 

  23. HAJNSEK I, KUGLER F, LEE S K, PAPATHANASSIOU K P. Tropical forest parameter estimation by means of Pol-InSAR: the INDREX-II campaign [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 481–493. DOI: https://doi.org/10.1109/tgrs.2008.2009437.

    Article  Google Scholar 

  24. HAJNSEK I, SCHEIBER R, ULANDER L, GUSTAVSSON A, SANDBERG G, TEBALDINI S. BIOSAR 2007: Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2007 experiment [R]. Final Report, ESA Contract No.: 20755/07/NL/CB, 2008.

  25. HAJNSEK I, SCHEIBER R, KELLER M, HORN R, LEE S, ULANDER L. BIOSAR 2008: Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2008 experiment [R]. Final Report, ESTEC Contract 22052/08/NL/CT-002, 2009.

  26. ULANDER L M H, GUSTAVSSON A, FLOOD B, MURDIN D, DUBOIS-FERNANDEZ P, DUPUIS X. BioSAR 2010: Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2010 Experiment [R]. Final Report, ESA contract No. 4000102285/10/NL/JA/ef, 2011.

  27. HAJNSEK I. Technical assistance for the development of airborne SAR and geophysical measurements during the AfriSAR campaign [R]. Final Report, ESA contract No. 4000114293/15/NL/CT, 2017.

  28. TOAN T L, QUEGAN S, DAVIDSON M W J, BALZTER H, PAILLOU P, PAPATHANASSIOU K P, PLUMMER S, ROCCA F, SAATCHI S, SHUGART H, ULANDER L. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle [J]. Remote Sensing of Environment, 2011, 115(11): 2850–2860. DOI: https://doi.org/10.1016/j.rse.2011.03.020.

    Article  Google Scholar 

  29. QUEGAN S, TOAN L T, CHAVE J, DALL J, EXBRAYAT J F. The European space agency BIOMASS mission: Measuring forest aboveground biomass from space [J]. Remote Sensing of Environment, 2019, 227: 44–60. DOI: https://doi.org/10.1016/j.rse.2019.03.032.

    Article  Google Scholar 

  30. ARCIONI M, BENSI P, DAVIDSON M W J, DRINKWATER M, SILVESTRIN P. ESA’s biomass mission candidate system and payload overview [C]// Geoscience and Remote Sensing Symposium (IGARSS), 2012. IEEE International, 2012.

  31. DLR. TanDEM-L: Satellite mission proposal for monitoring dynamic processes on the Earth’s surface [EB/OL]. http://www.dlr.de/hr/en/Portaldata/32/Resources/dokumente/broschueren/Tandem-L_web_Broschuere2014_en.pdf, 2014.

  32. MOREIRA A, KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P, YOUNIS M, LOPEZ-DEKKER P, HUBER S, VILLANO M, PARDINI M. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface [J]. Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. DOI: https://doi.org/10.1109/MGRS.2015.2437353.

    Article  Google Scholar 

  33. ZAN F D, PAPATHANASSIOU K P, LEE S K. TanDEM-L forest parameter performance analysis [C]// Proceedings of 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (Pol-InSAR). Frascti, Italy: ESA 2009.

    Google Scholar 

  34. OLESK A, VOORMANSIK K, VAIN A, NOORMA M, PRAKS J. Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 8(12): 5565–5572. DOI: https://doi.org/10.1109/JSTARS.2015.2501648.

    Article  Google Scholar 

  35. CHEN Hao, CLOUDE S R, GOODENOUGH D G. Forest canopy height estimation using TanDEM-X coherence data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3177–3188. DOI: https://doi.org/10.1109/jstars.2016.2582722.

    Article  Google Scholar 

  36. OLESK A, PRAKS J, ANTROPOV O, ZALITE K, ARUMAE T, VOORMANSIK K. Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X data [J]. Remote Sensing, 2016, 8(9): 700–722. DOI: https://doi.org/10.3390/rs8090700.

    Article  Google Scholar 

  37. CHEN Hao, CLOUDE S R, GOODENOUGH D G, HILL D A, NESDOLY A. Radar forest height estimation in mountainous terrain using TanDEM-X coherence data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3443–3452. DOI: https://doi.org/10.1109/jstars.2018.2866059.

    Article  Google Scholar 

  38. SCHLUND M, MAGDON P, EATON B, AUMANN C, ERASMIA S. Canopy height estimation with TanDEM-X in temperate and boreal forests [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 1–13. DOI: https://doi.org/10.1016/j.jag.2019.101904.

    Article  Google Scholar 

  39. QI Wen-lu, DUBAYAH R O. Combining TanDEM-X InSAR and simulated GEDI lidar observations for forest structure mapping [J]. Remote Sensing of Environment, 2016, 187: 253–266. DOI: https://doi.org/10.1016/j.rse.2016.10.018.

    Article  Google Scholar 

  40. QI Wen-lu, LEE S K, HANCOCK S, LUTHCKE S, TANG Hao, ARMSTONA J, DUBAYAH R O. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data [J]. Remote Sensing of Environment, 2019, 221: 621–634. DOI: https://doi.org/10.1016/j.rse.2018.11.035.

    Article  Google Scholar 

  41. LEI Yang, SIQUEIRA P, TORBICK N, DUCEY M, CHOWDHURY D, SALAS W. Generation of large-scale moderate-resolution forest height mosaic with spaceborne repeat-pass SAR interferometry and Lidar [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 770–787. DOI: https://doi.org/10.1109/TGRS.2018.2860590.

    Article  Google Scholar 

  42. HUANG Hua-bing, LIU Cai-xia, WANG Xiao-yi. Constructing a finer-resolution forest height in China using ICESat/GLAS, Landsat and ALOS PALSAR data and height patterns of natural forests and plantations [J]. Remote Sensing, 2019, 11(15): 1740. DOI: https://doi.org/10.3390/rs11151740.

    Article  Google Scholar 

  43. SCHLUND M, BARON D, MAGDON P, ERASMI S. Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 232–241. DOI: https://doi.org/10.1016/j.isprsjprs.2018.11.021.

    Article  Google Scholar 

  44. FLYNN T, TABB M, CARANDE R. Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry [C]// Geoscience and Remote Sensing Symposium (IGARSS). Toronto, Canada: IEEE 2002, 2596–2598.

    Chapter  Google Scholar 

  45. PAPATHANASSIOU K P, CLOUDE S R. The effect of temporal decorrelation on the inversion of forest parameters from PolInSAR data [C]// International Geoscience and Remote Sensing Symposium. 2003, 3: 1429–1431.

    Google Scholar 

  46. LAVALLE M, SIMARD M, HENSLEY S. A temporal decorrelation model for polarimetric radar interferometers [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2880–2888. DOI: https://doi.org/10.1109/TGRS.2011.2174367.

    Article  Google Scholar 

  47. LAVALLE M, HENSLEY S. Extraction of structural and dynamic properties of forests from polarimetric interferometric SAR data affected by temporal decorrelation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4752–4767. DOI: https://doi.org/10.1109/TGRS.2015.2409066.

    Article  Google Scholar 

  48. LU Hong-xi, SUO Zhi-yong, GUO Rui, BAO Zheng. S-RVoG model for forest parameters inversion over underlying topography [J]. Electronics Letters, 2013, 49(9): 618–620. DOI: https://doi.org/10.1049/el.2012.4467.

    Article  Google Scholar 

  49. XIE Qing-hua, ZHU Jian-jun, WANG Chang-cheng, FU Hai-qiang, LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D. A modified dual-baseline PolInSAR method for forest height estimation [J]. Remote Sensing, 2017, 9: 819. DOI: https://doi.org/10.3390/rs9080819.

    Article  Google Scholar 

  50. GARESTIER F, TOAN L T. Forest modeling for height inversion using single-baseline InSAR/Pol-InSAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1528–1539. DOI: https://doi.org/10.1159/000048217.

    Article  Google Scholar 

  51. FU Hai-qiang, WANG Chang-cheng, ZHU Jian-jun, XIE Qing-hua, ZHANG Bing. Estimation of pine forest height and underlying DEM using multi-baseline P-band PolInSAR data [J]. Remote Sensing, 2016, 8(10): 820. DOI: https://doi.org/10.3390/rs8100820.

    Article  Google Scholar 

  52. FU Wen-xue, GUO Hua-dong, SONG Peng-feng, TIAN Bang-sen, LI Xin-wu, SUN Zhong-chang. Combination of PolInSAR and LiDAR techniques for forest height estimation [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1418–1422. DOI: https://doi.org/10.1109/LGRS.2017.2703628.

    Article  Google Scholar 

  53. LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, ERTEN E, CAMPOS-TABERNER M, GARCIA-HARO F J. Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with Tandem-X data [J]. Remote Sensing of Environment, 2017, 192: 30–44. DOI: https://doi.org/10.1016/j.rse.2017.02.004.

    Article  Google Scholar 

  54. BALLESTER-BERMAN J D, LOPEZ-SANCHEZ J M. Combination of direct and double-bounce ground responses in the homogeneous oriented volume over ground model [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(1): 54–58. DOI: https://doi.org/10.1109/lgrs.2010.2051016.

    Article  Google Scholar 

  55. CLOUDE S R, PAPATHANASSIOU K P. Three-stage inversion process for polarimetric SAR interferometry [J]. IEEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 125–134. DOI: https://doi.org/10.1049/ip-rsn:20030449.

    Article  Google Scholar 

  56. IRIBE K, LOPEZ-MARTINEZ C, PAPATHANASSIOU K P, LEE S K. Estimation of ground topography in forested terrain by means of Pol-InSAR [C]// Geoscience and Remote Sensing Symposium (IGARSS). Boston, MA: IEEE 2008.

    Google Scholar 

  57. LAVALLE M, KHUN K. Three-baseline InSAR estimation of forest height [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1737–1741. DOI: https://doi.org/10.1109/LGRS.2014.2307583.

    Article  Google Scholar 

  58. FU Hai-qiang, ZHU Jian-jun, WANG Chang-cheng, LI Zhi-wei. Underlying topography extraction over forest areas from multi-baseline PolInSAR data [J]. Journal of Geodesy, 2017, 9: 1–15. DOI: https://doi.org/10.1007/s00190-017-1091-1.

    Google Scholar 

  59. SHI Lei. Vegetation height and underlying ground altitude estimation based on multi-baseline PolInSAR data [D]. Wuhan: Wuhan University 2013. (in Chinese)

    Google Scholar 

  60. MERCER B, ZHANG Qiao-ping, SCHWAEBISCH M, DENBINA M, CLOUDE S R. Forest height and ground topography at L-band from an experimental single-pass airborne Pol-InSAR system [C]// Proceedings of PolInsar Workshop. Frascati, Italy: ESA, 2009, 668: 106–123.

    Google Scholar 

  61. LI Lan. Forest vertical information extraction based on P-band SAR tomography [D]. Beijing: Chinese Academy of Foresry 2016. (in Chinese)

    Google Scholar 

  62. LI Wen-mei. Forest vertical structure parameters estimation using polarimetric interferometric tomography SAR [D]. Beijing: Chinese Academy of Foresry 2013. (in Chinese)

    Google Scholar 

  63. LI Xin-wu, LIANG Lei, GUO Hua-dong, HUANG Yue. Compressive sensing for multibaseline polarimetric SAR tomography of forested areas [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(1): 153–166. DOI: https://doi.org/10.1109/TGRS.2015.2451992.

    Article  Google Scholar 

  64. TEBALDINI S. Multi-baseline SAR imaging: models and algorithms [D]. Italy, Milano: Politecnico Di Milano 2009.

    Google Scholar 

  65. TEBALDINI S. Algebraic synthesis of forest scenarios from multibaseline PolInSAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4132–4142. DOI: https://doi.org/10.1109/tgrs.2009.2023785.

    Article  Google Scholar 

  66. TEBALDINI S. Single and multipolarimetric SAR tomography of forested areas: A parametric approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2375–2387. DOI: https://doi.org/10.1109/tgrs.2009.2037748.

    Article  Google Scholar 

  67. FREY O, MEIER E. Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3648–3659. DOI: https://doi.org/10.1109/TGRS.2011.2125972.

    Article  Google Scholar 

  68. PARDINI M, PAPATHANASSIOU K P. Linking SAR tomography and polarization coherence tomography in forest scenarios [C]// Geoscience and Remote Sensing Symposium (IGARSS). IEEE International, 2018.

  69. KUGLER F, LEE S K, HAJNSEK I, PAPATHANASSIOU K P. Forest height estimation by means of Pol-InSAR data inversion: The role of the vertical wavenumber [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5294–5311. DOI: https://doi.org/10.1109/tgrs.2015.2420996.

    Article  Google Scholar 

  70. LIAO Zhan-mang, HE Bing-bing, VAN DIJK A I J M, BAI Xiao-jing, QUAN Xing-wen. The impacts of spatial baseline on forest canopy height model and digital terrain model retrieval using P-band PolInSAR data [J]. Remote Sensing of Environment, 2018, 210: 403–421. DOI: https://doi.org/10.1016/j.rse.2018.03.033.

    Article  Google Scholar 

  71. ZHU Jian-jun, LI Zhi-wei, HU Jun. Research progress and methods of InSAR for deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717–1733. DOI: https://doi.org/10.11947/j.AGCS.2017.20170350.

    Google Scholar 

  72. FU Hai-qiang, ZHU Jian-jun, WANG Chang-cheng, WANG Hui-qiang, ZHAO Rong. A wavelet decomposition and polynomial fitting-based method for the estimation of time-varying residual motion error in airborne interferometric SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 49–59. DOI: https://doi.org/10.1109/TGRS.2017.2727076.

    Article  Google Scholar 

  73. XIE Yan-zhou, FU Hai-qiang, ZHU Jian-jun, WANG Chang-cheng, XIE Qing-hua. A LiDAR-aided multibaseline PolInSAR method for forest height estimation: With emphasis on dual-baseline selection [J]. IEEE Geoscience and Remote Sensing Letters, 2019. DOI: https://doi.org/10.1109/LGRS.2019.2951805.

  74. POURSHAMSI M, GARCIA M, LAVALLE M, BALZTER H. A machine-learning approach to PolInsar and lidar data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3453–3463. DOI: https://doi.org/10.1109/JSTARS.2018.2868119.

    Article  Google Scholar 

  75. MICHAEL D, MARC S, BRIAN H. Forest height estimation using multibaseline PolInSAR and sparse Lidar data fusion [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3415–3433. DOI: https://doi.org/10.1109/JSTARS.2018.2841388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-jun Zhu  (朱建军).

Additional information

Foundation item: Projects(41820104005, 41531068, 41842059, 41904004) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Yz., Zhu, Jj., Fu, Hq. et al. A review of underlying topography estimation over forest areas by InSAR: Theory, advances, challenges and perspectives. J. Cent. South Univ. 27, 997–1011 (2020). https://doi.org/10.1007/s11771-020-4348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4348-4

Key words

关键词

Navigation