Skip to main content
Log in

Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III)

磁性Fe3O4@Cu/Ce 微球催化氧化协同吸附重金属三价砷

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Magnetic Fe3O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic (As(III)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(III).

摘要

本文通过一步溶剂法成功制备了磁性Fe3O4@Cu/Ce 微球,并将其应用于毒性重金属三价砷的 处理.系统考察了Cu/Ce 元素共掺杂对复合材料结构晶型、催化氧化性能以及对三价砷的去除性能的 影响.揭示了Cu/Ce 元素的共掺杂效应可以显著降低磁性微球的晶粒尺寸,增加晶格缺陷,提高氧空 缺位和丰富活性官能团.研究表明磁性Fe3O4@Cu/Ce 微球对重金属三价砷具有较强的去除性能,最 大吸附量可达139.19 mg/g.三价砷的去除机理主要涉及到催化氧化协同吸附,将三价砷氧化为五价砷 的同时将其吸附在微球上.本文提出了一种可行的高性能磁性复合材料的制备方法,为三价砷的处理 提供了技术思路

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. SHAKOOR M B, NIAZI N K, BIBI I, SHAHID M, SAQIB Z A, NAWAZ M F, SHAHEEN S M, WANG H, TSANG D C W, BUNDSCHUH J, OK Y S, RINKLEBE J. Exploring the arsenic removal potential of various biosorbents from water [J]. Environment International, 2019, 123: 567–579. DOI: https://doi.org/10.1016/j.envint.2018.12.049.

    Article  Google Scholar 

  2. XU Fang-nan, CHEN Hu-xing, DAI Yu-xia, WU Shuang-lei, TANG Xian-jin. Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water [J]. Journal of Environment Management, 2019, 245: 160–167. DOI: https://doi.org/10.1016/j.jenvman.2019.05.071.

    Article  Google Scholar 

  3. ASERE T G, STEVENS C V, DU LAING G. Use of (modified) natural adsorbents for arsenic remediation: A review [J]. Science of the Total Environment, 2019, 676: 706–720. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.237.

    Article  Google Scholar 

  4. SUN Tian-yi, ZHAO Zhi-wei, LIANG Zhi-jie, LIU Jie, SHI Wen-xin, CUI Fu-yi. Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles under visible light irradiation [J]. Chemical Engineering Journal, 2018, 334: 1527–1536. DOI: https://doi.org/10.1016/j.cej.2017.11.052.

    Article  Google Scholar 

  5. XI Yun-hao, ZOU Jing-tian, LUO Yong-guang, LI Jing, LI Xi-teng, LIAO Tian-qi, ZHANG Li-bo, WANG Chen, LIN Guo. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron [J]. Chemical Engineering Journal, 2019, 375: 121928. DOI: https://doi.org/10.1016/j.jcis.2018.02.046.

    Article  Google Scholar 

  6. HE Xin-yu, DENG Fang, SHEN Ting-ting, YANG Li-ming, CHEN De-zhi, LUO Jian-feng, LUO Xu-biao, MIN Xiao-ye, WANG Fang. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight [J]. Journal of Colloid and Interface Science, 2019, 539: 223–234. DOI: https://doi.org/10.1016/j.jcis.2018.12.065.

    Article  Google Scholar 

  7. YU Yang, YU Ling, SHIH Kai-min, CHEN J P. Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications [J]. Journal of Colloid and Interface Science, 2018, 521: 252–260. DOI: https://doi.org/10.1016/j.jcis.2018.02.046.

    Article  Google Scholar 

  8. NASIR A M, GOH P S, ISMAIL A F. Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM) nanocomposite hollow fiber membrane for synergistic arsenic removal [J]. Separation and Purification Technology, 2019, 213: 162–175. DOI: https://doi.org/10.1016/j.seppur.2018.12.040.

    Article  Google Scholar 

  9. CHEN M, SHAFER-PELTIER K, RANDTKE S J, PELTIER E. Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions [J]. Chemosphere, 2018, 213: 285–294. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.046.

    Article  Google Scholar 

  10. JAHROMI F G, GHAHREMAN A. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process [J]. Journal of Hazardous Materials, 2018, 360: 631–638. DOI: https://doi.org/10.1016/j.jhazmat.2018.08.019.

    Article  Google Scholar 

  11. CAI Gui-yuan, ZHU Xing, LI Kong-zhai, QI Xian-jin, WEI Yong-gang, WANG Hua, HAO Feng-yan. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator [J]. Water Research, 2019, 157: 269–280. DOI: https://doi.org/10.1016/j.watres.2019.03.067.

    Article  Google Scholar 

  12. WU Kun, JING Chun-yang, ZHANG Jin, LIU Ting, YANG Sheng-jiong, WANG Wen-dong. Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic(III/V) from water [J]. Applied Surface Science, 2019, 466: 746–756. DOI: https://doi.org/10.1016/j.apsusc.2018.10.091.

    Article  Google Scholar 

  13. QI Peng-fei, LUO Rong, PICHLER T, ZENG Jian-qiang, WANG Yan, FAN Yu-hua, SUI Kun-yan. Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(III) and antimony(III) from aqueous solution [J]. Journal of Hazardous Materials, 2019, 378: 120721. DOI: https://doi.org/10.1016/j.jhazmat.2019.05.114.

    Article  Google Scholar 

  14. WANG Hai-ying, HE Ying-jie, CHAI Li-yuan, LEI Huang, YANG Wei-chun, HOU Lan-jing, YUAN Tao, JIN Lin-feng, TANG Chong-jian, LUO Jian. Highly-dispersed Fe2O3@C electrode materials for Pb2+ removal by capacitive deionization [J]. Carbon, 2019, 153: 12–20. DOI: https://doi.org/10.1016/j.carbon.2019.06.066.

    Article  Google Scholar 

  15. WU Jin, ZHU Hong-shan, LIU Ge, TAN Li-qiang, HU Xiao-ye, CHEN Chang-lun, ALHARBI N S, HAYAT T, TAN Xiao-li. Fabrication of core-shell CMNP@PmPD nanocomposite for efficient As(V) adsorption and reduction [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4399–4407. DOI: https://doi.org/10.1021/acssuschemeng.7b00468.

    Article  Google Scholar 

  16. WU Jin, CHEN Ke, TAN Xiao-li, FANG Ming, HU Xiao-ye, TANG Zhen-wu, WANG Xiang-ke. Core-shell CMNP@PDAP nanocomposites for simultaneous removal of chromium and arsenic [J]. Chemical Engineering Journal, 2018, 349: 481–490. DOI: https://doi.org/10.1016/j.cej.2018.05.114.

    Article  Google Scholar 

  17. PENG Bing, SONG Ting-ting, WANG Ting, CHAI Li-yuan, YANG Wei-chun, LI Xiao-rui, LI Chao-fang, WANG Hai-ying. Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application [J]. Chemical Engineering Journal, 2016, 299: 15–22. DOI: https://doi.org/10.1016/j.cej.2016.03.135.

    Article  Google Scholar 

  18. XIE Wu-ming, ZHOU Feng-ping, BI Xiao-lin, CHEN Dong-dong, HUANG Zi-jun, LI Yu-hui, SUN Shui-yu, LIU Jing-yong. Decomposition of nickel(II)-ethylenediaminetetraacetic acid by fenton-like reaction over oxygen vacancies-based Cu-doped Fe3O4@γ-Al2O3 catalyst: A synergy of oxidation and adsorption [J]. Chemosphere, 2019, 221: 563–572. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.083.

    Article  Google Scholar 

  19. AASHIMA A, UPPAL S, ARORA A, GAUTAM S, SINGH S, CHOUDHARY R J, MEHTA S K. Magnetically retrievable Ce-doped Fe3O4 nanoparticles as scaffolds for the removal of azo dyes [J]. RSC Advances, 2019, 9(40): 23129–23141. DOI: https://doi.org/10.1039/C9RA03252E.

    Article  Google Scholar 

  20. GOGOI A, NAVGIRE M, SARMA K C, GOGOI P. Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol [J]. Chemical Engineering Journal, 2017, 311: 153–162. DOI: https://doi.org/10.1016/j.cej.2016.11.086.

    Article  Google Scholar 

  21. MORETTI E, STORARO L, TALON A, RIELLO P, MOLINA A I, RODRÍGUEZ-CASTELLÓ N E. 3-D flower like Ce-Zr-Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): Effect of catalyst composition [J]. Applied Catalysis B: Environmental, 2015, 168–169: 385–395. DOI: https://doi.org/10.1016/j.apcatb.2014.12.032.

    Article  Google Scholar 

  22. ZHANG Yan-ping, FLYTZANI-STEPHANOPOULOS M. Hydrothermal stability of cerium modified Cu-ZSM-5 catalyst for nitric oxide decomposition [J]. Journal of Catalysis, 1996, 164: 131–145. DOI: https://doi.org/10.1006/jcat.1996.0369.

    Article  Google Scholar 

  23. CAI Wei, ZHONG Qin, YU Yang, DAI Sheng. Correlation of morphology with catalytic performance of CrOxZCe0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM [J]. Chemical Engineering Journal, 2016, 288: 238–245. DOI: https://doi.org/10.1016/j.cej.2015.12.009.

    Article  Google Scholar 

  24. JAMPAIAH D, IPPOLITO S J, SABRI Y M, REDDY B M, BHARGAVA S K. Highly efficient nanosized Mn and Fe codoped ceria-based solid solutions for elemental mercury removal at low flue gas temperatures [J]. Catalysis Science Technology, 2015(5): 2913–2924. DOI: https://doi.org/10.1039/C5CY00231A.

  25. PENG Cong, CHAI Li-yuan, TANG Chong-jian, MIN Xiao-bo, SONG Yu-xia, DUAN Cheng-shan, YU Cheng. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal [J]. Journal of Environmental Sciences, 2017, 51: 222–233. DOI: https://doi.org/10.1016/j.jes.2016.06.020.

    Article  Google Scholar 

  26. CHOU M H, LIU S B, HUANG C Y, WU S Y, CHENG C L. Confocal Raman spectroscopic mapping studies on a single CuO nanowire [J]. Applied Surface Science, 2008, 254(23): 7539–7543. DOI: https://doi.org/10.1016/j.apsusc.2007.12.065.

    Article  Google Scholar 

  27. THI T M, TRANG N T H, van ANH N T. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater [J]. Applied Surface Science, 2015, 340: 166–172. DOI: https://doi.org/10.1016/j.apsusc.2015.02.132.

    Article  Google Scholar 

  28. YEN H, SEO Y, KALIAGUINE S, KLEITZ F. Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature [J]. Angewandte Communications, 2012, 51(48): 12032–12035. DOI: https://doi.org/10.1002/anie.201206505.

    Google Scholar 

  29. MALLESHAM B, SUDARSANAM P, REDDY B, VENKAT S, REDDY B M. Development of cerium promoted copper-magnesium catalysts for biomass valorization: Selective hydrogenolysis of bioglycerol [J]. Applied Catalysis B: Environmental, 2016, 181: 47–57. DOI: https://doi.org/10.1016/j.apcatb.2015.07.037.

    Article  Google Scholar 

  30. SCHAUB R, THOSTRUP P, LOPEZ N, LAEGSGAARD E, STENSGAARD I, NORSKOV J K, BESENBACHER F. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110) [J]. Physical Review Letters, 2001, 87(26): 266104. DOI: https://doi.org/10.1103/PhysRevLett.87.266104.

    Article  Google Scholar 

  31. CAI Mei-qiang, ZHU Yi-zu, WEI Zong-su, HU Jian-qiang, PAN Sheng-dong, XIAO Rui-yang, DONG Chun-ying, JIN Mi-cong. Rapid decolorization of dye orange G by microwave enhanced fenton-like reaction with delafossite-type CuFeO2 [J]. Science of the Total Environment, 2017, 580: 966–973. DOI: https://doi.org/10.1016/j.scitotenv.2016.12.047.

    Article  Google Scholar 

  32. JIN Lin-feng, CHAI Li-yuan, REN Li-li, JIANG Yu-xin, YANG Wei-chun, WANG Sheng, LIAO Qi, WANG Hai-ying, ZHANG Li-yuan. Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide [J]. Environ Sci Pollut R, 2019, 26(30): 31099–31110. DOI: https://doi.org/10.1007/s11356-019-06175-x.

    Article  Google Scholar 

  33. WANG Ting, ZHANG Li-yuan, LI Chao-fang, YANG Wei-chun, SONG Ting-ting, TANG Chong-jian, MENG Yun, DAI Shuo, WANG Hai-ying, CHAI Li-yuan, LUO Jian. Synthesis of core-shell magnetic Fe3O4@poly(m-Phenylenediamine) particles for chromium reduction and adsorption [J]. Environmental Science and Technology, 2015, 49(9): 5654–5662. DOI: https://doi.org/10.1021/es5061275.

    Article  Google Scholar 

  34. SHAN Chao, TONG Mei-ping. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide [J]. Water Research, 2013, 47(10): 3411–3421. DOI: https://doi.org/10.1016/j.watres.2013.03.035.

    Article  Google Scholar 

  35. GUPTA K, BHATTACHARYA S, NANDI D, DHAR A, MAITY A, MUKHOPADHYAY A, CHATTOPADHYAY D J, RAY N R, SEN P, GHOSH U C. Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway [J]. Journal of Colloid and Interface Science, 2012, 377(1): 269–276. DOI: https://doi.org/10.1016/j.jcis.2012.01.066.

    Article  Google Scholar 

  36. DHOBLE R M, LUNGE S, BHOLE A G, RAYALU S. Magnetic binary oxide particles (MBOP): A promising adsorbent for removal of As (III) in water [J]. Water Research, 2011, 45(16): 4769–4781. DOI: https://doi.org/10.1016/j.watres.2011.06.016.

    Article  Google Scholar 

  37. LIN Sen, LU Dian-nan, LIU Zheng. Removal of arsenic contaminants with magnetic y-Fe2O3 nanoparticles [J]. Chemical Engineering Journal, 2012, 211–212: 46–52. DOI: https://doi.org/10.1016/j.cej.2012.09.018.

    Article  Google Scholar 

  38. YU Lian, PENG Xian-jia, NI Fan, LI Jin, WANG Dong-sheng, LUAN Zhao-kun. Arsenite removal from aqueous solutions by gamma-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption [J]. Journal of Hazardous Materials, 2013, 246–247: 10–17. DOI: https://doi.org/10.1016/j.jhazmat.2012.12.007.

    Article  Google Scholar 

  39. JIN Lin-feng, HUANG Lei, REN Li-li, HE Ying-jie, TANG Jing-wen, WANG Sheng, YANG Wei-chun, WANG Hai-ying, CHAI Li-yuan. Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal [J]. J Mater Sci, 2019, 54(1): 383–395. DOI: https://doi.org/10.1007/s10853-018-2844-9.

    Article  Google Scholar 

  40. PENG Cong, CHAI Li-yuan, SONG Yu-xia, MIN Xiao-bo, TANG Chong-jian. Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal [J]. Journal of Central South University, 2018, 25(5): 1033–1042. DOI: https://doi.org/10.1007/s11771-018-3803-y.

    Article  Google Scholar 

  41. HABIBA U, AFIFI A M, SALLEH A, ANG B C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+ [J]. Journal of Hazardous Materials, 2017, 322(Pt A): 182–194. DOI: https://doi.org/10.1016/j.jhazmat.2016.06.028.

    Article  Google Scholar 

  42. WANG Teng, LI Cai-ting, ZHAO Ling-kui, ZHANG Jun-yi, LI Shan-hong, ZENG Guang-ming. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO [J]. Applied Surface Science, 2017, 400: 227–237. DOI: https://doi.org/10.1016/j.apsusc.2016.12.192.

    Article  Google Scholar 

  43. WANG Ting, ZHANG Li-yuan, WANG Hai-ying, YANG Wei-chun, FU Ying-chun, ZHOU Wen-li, YU Wan-ting, XIANG Kai-song, SU Zhen, DAI Sshuo, CHAI Li-yuan. Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride) and their application in arsenic removal [J]. ACS Applied Materials Interfaces, 2013, 5(23): 12449–12459. DOI: https://doi.org/10.1021/am403533v.

    Article  Google Scholar 

  44. WEN Zhi-pan, ZHANG Ya-lei, WANG Yu, LI Li-na, CHEN Rong. Redox transformation of arsenic by magnetic thin-film MnO2 nanosheet-coated flowerlike Fe3O4 nanocomposites [J]. Chemical Engineering Journal, 2017, 312: 39–49. DOI: https://doi.org/10.1016/j.cej.2016.11.112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-ying Wang  (王海鹰).

Additional information

Foundation item: Project(2018YFC1802204) supported by the National Key R&D Program of China; Project(51634010) supported by the Key Project of National Natural Science Foundation of China; Project(2018SK2026) supported by the Key R&D Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Lf., Chai, Ly., Song, Tt. et al. Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III). J. Cent. South Univ. 27, 1176–1185 (2020). https://doi.org/10.1007/s11771-020-4358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4358-2

Key words

关键词

Navigation