Skip to main content
Log in

Solution-processed perovskite solar cells

溶液法制备钙钛矿太阳电池

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.

摘要

钙钛矿太阳电池已经成为光伏应用中最有前途的候选者之一. 它具有低成本、低温溶液涂布或 印刷工艺制备及兼容大规模卷对卷制造工艺等优点, 展现出巨大的商业化前景. 在这篇文章中, 我们 重点综述了介孔和平面结构钙钛矿太阳电池器件中溶液法沉积电荷传输层、钙钛矿吸收层及顶电极 层. 此外, 还重点概括了可大规模溶液法制备钙钛矿薄膜的工艺方法、钙钛矿薄膜结晶性增强及表面 缺陷钝化等, 进而提高钙钛矿太阳电池性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GRÄTZEL M. The light and shade of perovskite solar cells [J]. Nature Materials, 2014, 13(9): 838–842. DOI: https://doi.org/10.1038/nmat4065.

    Article  Google Scholar 

  2. WEHRENFENNIG C, EPERON G E, JOHNSTON M B, SNAITH H J, HERZ L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Advanced Materials, 2014, 26(10): 1584–1589. DOI: https://doi.org/10.1002/adma.201305172.

    Article  Google Scholar 

  3. CHEN Qi, ZHOU Huan-ping, FANG Yi-hao, STIEG A Z, SONG T B, WANG H H, XU Xiao-bao, LIU Yong-sheng, LU Shi-rong, YOU Jing-bi, SUN Peng-yu, MCKAY J, GOORSKY M S, YANG Yang. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells [J]. Nature Communications, 2015, 6(1): 1–9. DOI: https://doi.org/10.1038/ncomms8269.

    Google Scholar 

  4. XING Gui-chuan, MATHEWS N, SUN Shuang-yong, LIM S S, LAM Y M, GRÄTZEL M, MHAISALKAR S, SUM T C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 [J]. Science, 2013, 342(6156): 344–347. DOI: https://doi.org/10.1126/science.1243167.

    Article  Google Scholar 

  5. DONG Qing-feng, FANG Yan-jun, SHAO Yu-chuan, MULLIGAN P, QIU Jie, CAO Lei, HUANG Jin-song. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals [J]. Science, 2015, 347(6225): 967–970. DOI: https://doi.org/10.1126/science.aaa5760.

    Article  Google Scholar 

  6. NOH J H, IM S H, HEO J H, MANDAL T N, SEOK S II. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells [J]. Nano Letters, 2013, 13(4): 1764–1769. DOI: https://doi.org/10.1021/nl400349b.

    Article  Google Scholar 

  7. JEON N J, NOH J H, YANG W S, KIM Y C, RYU S, SEO J, SEOK S II. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature, 2015, 517(7535): 476–480. DOI: https://doi.org/10.1038/nature14133.

    Article  Google Scholar 

  8. LIN Qian-qian, ARMIN A, NAGIRI R C R, BURN P L, MEREDITH P. Electro-optics of perovskite solar cells [J]. Nature Photonics, 2015, 9(2): 106–112. DOI: https://doi.org/10.1038/nphoton.2014.284.

    Article  Google Scholar 

  9. YANG Ye, YANG Meng-jin, MOORE D T, YAN Yong, MILLER E M, ZHU Kai, BEARD M C. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films [J]. Nature Energy, 2017, 2(2): 1–7. DOI: https://doi.org/10.1038/nenergy.2016.207.

    Article  Google Scholar 

  10. KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051. DOI: https://doi.org/10.1021/ja809598r.

    Article  Google Scholar 

  11. ETGAR L, GAO Peng, XUE Zhao-sheng, PENG Qin, CHANDIRAN A K, LIU Bin, NAZEERUDDIN M K, GRÄTZEL M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells [J]. Journal of the American Chemical Society, 2012, 134(42): 17396–17399. DOI: https://doi.org/10.1021/ja307789s.

    Article  Google Scholar 

  12. JIANG Qi, ZHAO Yang, ZHANG Xing-wang, YANG Xiao-lei, CHEN Yong, CHU Ze-ma, YE Qiu-feng, LI Xing-xing, YIN Zhi-gang, YOU Jing-bi. Surface passivation of perovskite film for efficient solar cells [J]. Nature Photonics, 2019, 13(4): 460–466. DOI: https://doi.org/10.1038/s41566-019-0398-2.

    Article  Google Scholar 

  13. KIM Min-Jin, KIM Gi-Hwan, LEE Tae-Kyung, CHOI In-Woo, CHOI Hye-Won, JO Yim-Hyun, YOON Yung-Jin, KIM Jae-Won, LEE Ji-Yun, HUH Dai-Hong, LEE He-On, KWAK Sang-Kyu, KIM Jin-Young, KIM Dong-Suk. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells [J]. Joule, 2019, 3(9): 2179–2192. DOI: https://doi.org/10.1016/j.joule.2019.06.014.

    Article  Google Scholar 

  14. YOO J J, WIEGHOLD S, SPONSELLER M C, CHUA M R, BERTRAM S N, HARTONO N T P, TRESBACK J S, HANSEN E C, CORREA-BAENA J P, BULOVIĆ V, BUONASSISI T, SHIN S S, BAWENDI M G. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss [J]. Energy & Environmental Science, 2019, 12(7): 2192–2199. DOI: https://doi.org/10.1039/C9EE00751B.

    Article  Google Scholar 

  15. JEON N J, NA H J, JUNG E H, YANG T Y, LEE Y G, KIM G J, SHIN H W, SEOK S II, LEE J M, SEO J W. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J]. Nature Energy, 2018, 3(8): 682–689. DOI: https://doi.org/10.1038/s41560-018-0200-6.

    Article  Google Scholar 

  16. JUNG E H, JEON N J, PARK E Y, MOON C S, SHIN T J, YANG T Y, NOH J H, SEO J W. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) [J]. Nature, 2019, 567(7749): 511–515. DOI: https://doi.org/10.1038/s41586-019-1036-3.

    Article  Google Scholar 

  17. Photovoltaic Research, NREL. Best research-cell efficiency chart [EB/OL] [2019-10-24]. https://www.nrel.gov/pv/cell-efficiency.html.

  18. HOWARD I A, ABZIEHER T, HOSSAIN I M, EGGERS H, SCHACKMAR F, TERNES S, RICHARDS B S, LEMMER U, PAETZOLD U W. Coated and printed perovskites for photovoltaic applications [J]. Advanced Materials, 2019, 31(26): 1806702. DOI: https://doi.org/10.1002/adma.201806702.

    Article  Google Scholar 

  19. LI Zhen, KLEIN T R, KIM D H, YANG Meng-jin, BERRY J J, VAN HEST M F A M, ZHU Kai. Scalable fabrication of perovskite solar cells [J]. Nature Reviews Materials, 2018, 3(4): 18017. DOI: https://doi.org/10.1038/natrevmats.2018.17.

    Article  Google Scholar 

  20. SWARTWOUT R, HOERANTNER M T, BULOVIĆ V. Scalable deposition methods for large-area production of perovskite thin films [J]. Energy & Encironmental Materials, 2019, 2(2): 119–145. DOI: https://doi.org/10.1002/eem2.12043.

    Article  Google Scholar 

  21. WANG Peng, WU Yi-hui, CAI Bing, MA Qing-shan, ZHENG Xiao-jia, ZHANG Wen-hua. Solution-processable perovskite solar cells toward commercialization: Progress and challenges [J]. Advanced Functional Materials, 2019, 29(47): 1807661. DOI: https://doi.org/10.1002/adfm.201807661.

    Article  Google Scholar 

  22. YOU Jing-bi, HONG Zi-ruo, YANG Yang (Michael), CHEN Qi, CAI Min, SONG T B, CHEN C C, LU Shi-rong, LIU Yong-sheng, ZHOU Huan-ping, YANG Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2): 1674–1680. DOI: https://doi.org/10.1021/nn406020d.

    Article  Google Scholar 

  23. YOU Jing-bi, YANG Yang (Michael), HONG Zi-ruo, SONG T B, MENG Lei, LIU Yong-sheng, JIANG Cheng-yang, ZHOU Huan-ping, CHANG W H, LI Gang, YANG Yang. Moisture assisted perovskite film growth for high performance solar cells [J]. Applied Physics Letters, 2014, 105(18): 183902. DOI: https://doi.org/10.1063/1.4901510.

    Article  Google Scholar 

  24. MENG Lei, YOU Jing-bi, GUO Tzung-Fang, YANG Yang. Recent advances in the inverted planar structure of perovskite solar cells [J]. Accounts of Chemical Research, 2016, 49(1): 155–165. DOI: https://doi.org/10.1021/acs.accounts.5b00404.

    Article  Google Scholar 

  25. DOCAMPO P, BALL J M, DARWICH M, EPERON G E, SNAITH H J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nature Communications, 2013, 4(1): 1–6. DOI: https://doi.org/10.1038/ncomms3761.

    Article  Google Scholar 

  26. BURSCHKA J, PELLET N, MOON S J, HUMPHRY-BAKER R, GAO Peng, NAZEERUDDIN M K, GRÄTZEL M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499(7458): 316–319. DOI: https://doi.org/10.1038/nature12340.

    Article  Google Scholar 

  27. SALIBA M, MATSUI T, DOMANSKI K, SEO J Y, UMMADISINGU A, ZAKEERUDDIN S M, CORREA-BAENA J P, TRESS W R, ABATE A, HAGFELDT A, GRÄTZEL M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance [J]. Science, 2016, 354(6309): 206–209. DOI: https://doi.org/10.1126/science.aah5557.

    Article  Google Scholar 

  28. MEI An-yi, LI Xiong, LIU Lin-feng, KU Zhi-liang, LIU Tong-fa, RONG Yao-guang, XU Mi, HU Min, CHEN Jiang-zhao, YANG Ying, GRÄTZEL M, HAN Hong-wei. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability [J]. Science, 2014, 345(6194): 295–298. DOI: https://doi.org/10.1126/science.1254763.

    Article  Google Scholar 

  29. XU Liao, WAN Fang, RONG Yao-guang, CHEN Hui, HE Song, XU Xiao-mei, LIU Gang, HAN Hong-wei, YUAN Yong-bo, YANG Jun-liang, GAO Yong-li, YANG Bing-chu, ZHOU Cong-hua. Stable monolithic hole-conductor-free perovskite solar cells using TiO2 nanoparticle binding carbon films [J]. Organic Electronics, 2017, 45: 131–138. DOI: https://doi.org/10.1016/j.orgel.2017.03.005.

    Article  Google Scholar 

  30. CHEN Hui, LI Kang-ming, LIU Huang, GAO Yong-li, YUAN Yong-bo, YANG Bing-chu, ZHOU Cong-hua. Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites [J]. Organic Electronics, 2018, 61: 119–124. DOI: https://doi.org/10.1016/j.orgel.2018.06.054.

    Article  Google Scholar 

  31. LI Kang-ming, CHEN Hui, LIU Huang, YUAN Yong-bo, GAO Yong-li, YANG Bing-chu, ZHOU Cong-hua. Dependence of power conversion properties of the hole-conductor-free mesoscopic perovskite solar cells on the thickness of carbon film [J]. Organic Electronics, 2018, 62: 298–303. DOI: https://doi.org/10.1016/j.orgel.2018.08.013.

    Article  Google Scholar 

  32. LIU Huang, YANG Bing-chu, CHEN Hui, LI Kang-ming, LIU Gang, YUAN Yong-bo, GAO Yong-li, ZHOU Cong-hua. Efficient and stable hole-conductor-free mesoscopic perovskite solar cells using SiO2 as blocking layer [J]. Organic Electronics, 2018, 58: 69–74. DOI: https://doi.org/10.1016/j.orgel.2018.04.008.

    Article  Google Scholar 

  33. GIORDANO F, ABATE A, CORREA BAENA J P, SALIBA M, MATSUI T, IM S H, ZAKEERUDDIN S M, NAZEERUDDIN M K, HAGFELDT A, GRÄETZEL M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells [J]. Nature Communications, 2016, 7(1): 1–6. DOI: https://doi.org/10.1038/ncomms10379.

    Google Scholar 

  34. KIM D H, HAN G S, SEONG W M, LEE J W, KIM B J, PARK N G, HONG K S, LEE S W, JUNG H S. Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells [J]. Chem Sus Chem, 2015, 8(14): 2392–2398. DOI: https://doi.org/10.1002/cssc.201403478.

    Article  Google Scholar 

  35. LIU Jian, WU Yong-zhen, QIN Chuan-jiang, YANG Xu-dong, YASUDA T, ISLAM A, ZHANG Kun, PENG Wen-qin, CHEN Wei, HAN Li-yuan. A dopant-free hole-transporting material for efficient and stable perovskite solar cells [J]. Energy & Environmental Science, 2014, 7(9): 2963–2967. DOI: https://doi.org/10.1039/C4EE01589D.

    Article  Google Scholar 

  36. SIDHIK S, CERDAN PASARÁN A, ESPARZA D, LÓPEZ LUKE T, CARRILES R, de LA ROSA E. Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high-performance hysteresis-free perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3571–3580. DOI: https://doi.org/10.1021/acsami.7b16312.

    Article  Google Scholar 

  37. ZHAO Chen, CHEN Bing-bing, QIAO Xian-feng, LUAN Lin, LU Kai, HU Bin. Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells [J]. Advanced Energy Materials, 2015, 5(14): 1500279. DOI: https://doi.org/10.1002/aenm.201500279.

    Article  Google Scholar 

  38. LEE M M, TEUSCHER J, MIYASAKA T, MURAKAMI T N, SNAITH H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J]. Science, 2012, 338(6107): 643–647. DOI: https://doi.org/10.1126/science.1228604.

    Article  Google Scholar 

  39. JIANG Qi, ZHANG Xing-wang, YOU Jing-bi. SnO2: A wonderful electron transport layer for perovskite solar cells [J]. Small, 2018, 14(31): 1801154. DOI: https://doi.org/10.1002/smll.201801154.

    Article  Google Scholar 

  40. EPERON G E, BURLAKOV V M, DOCAMPO P, GORIELY A, SNAITH H J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells [J]. Advanced Functional Materials, 2014, 24(1): 151–157. DOI: https://doi.org/10.1002/adfm.201302090.

    Article  Google Scholar 

  41. EPERON G E, STRANKS S D, MENELAOU C, JOHNSTON M B, HERZ L M, SNAITH H J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells [J]. Energy & Environmental Science, 2014, 7(3): 982–988. DOI: https://doi.org/10.1039/C3EE43822H.

    Article  Google Scholar 

  42. HEO J H, SONG D H, HAN H J, KIM S Y, KIM J H, KIM D, SHIN H W, AHN T K, WOLF C, LEE T W, IM S H. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate [J]. Advanced Materials, 2015, 27(22): 3424–3430. DOI: https://doi.org/10.1002/adma.201500048.

    Article  Google Scholar 

  43. XU Ji-xian, BUIN A, IP A H, LI Wei, VOZNYY O, COMIN R, YUAN Ming-jian, JEON S, NING Zhi-jun, MCDOWELL J J, KANJANABOOS P, SUN J P, LAN Xin-zheng, QUAN Li-na, KIM D H, HILL I G, MAKSYMOVYCH P, SARGENT E H. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes [J]. Nature Communications, 2015, 6(1): 1–8. DOI: https://doi.org/10.1038/ncomms8081.

    Google Scholar 

  44. LI Liang, CHEN Yi-hua, LIU Zong-hao, CHEN Qi, WANG Xin-dong, ZHOU Huan-ping. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell [J]. Advanced Materials, 2016, 28(44): 9862–9868. DOI: https://doi.org/10.1002/adma.201603021.

    Article  Google Scholar 

  45. LI Shao-sian, CHANG Chi-huang, WANG Ying-chiao, LIN Chung-wei, WANG Di-yan, LIN J C, CHEN C C, SHEU H S, CHIA Hao-chung, WU Wei-ru, JENG U S, LIANG Chi-te, SANKAR R, CHOU Fang-cheng, CHEN Chun-wei. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursorcapped nanoparticles [J]. Energy & Environmental Science, 2016, 9(4): 1282–1289. DOI: https://doi.org/10.1039/C5EE03229F.

    Article  Google Scholar 

  46. JENG Jun-yuan, CHIANG Yi-fang, LEE Mu-huan, PENG Shin-rung, GUO Tzung-fang, CHEN P, WEN Ten-chin. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells [J]. Advanced Materials, 2013, 25(27): 3727–3732. DOI: https://doi.org/10.1002/adma.201301327.

    Article  Google Scholar 

  47. HYUCK H J, JI HAN H, KIM D, KYU AHN T, HYUK I M S. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency [J]. Energy & Environmental Science, 2015, 8(5): 1602–1608. DOI: https://doi.org/10.1039/C5EE00120J.

    Article  Google Scholar 

  48. TURREN-CRUZ S H, SALIBA M, MAYER M T, JUÁREZ-SANTIESTEBAN H, MATHEW X, NIENHAUS L, TRESS W, ERODICI M P, SHER M J, BAWENDI M G, GRÄTZEL M, ABATE A, HAGFELDT A, CORREABAENA J P. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells [J]. Energy & Environmental Science, 2018, 11(1): 78–86. DOI: https://doi.org/10.1039/C7EE02901B.

    Article  Google Scholar 

  49. WANG Qi, SHAO Yu-chuan, DONG Qing-feng, XIAO Zheng-guo, YUAN Yong-bo, HUANG Jin-song. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process [J]. Energy & Environmental Science, 2014, 7(7): 2359–2365. DOI: https://doi.org/10.1039/C4EE00233D.

    Article  Google Scholar 

  50. BI D, MOON S J, HÄGGMAN L, BOSCHLOO G, YANG Lei, JOHANSSON E M J, NAZEERUDDIN M K, GRÄTZEL M, HAGFELDT A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures [J]. RSC Advances, 2013, 3(41): 18762. DOI: https://doi.org/10.1039/c3ra43228a.

    Article  Google Scholar 

  51. CHEN Qi, ZHOU Huan-ping, HONG Zi-ruo, LUO Song, DUAN Hsin-sheng, WANG Hsin-hua, LIU Yong-sheng, LI Gang, YANG Yang. Planar heterojunction perovskite solar cells via vapor-assisted solution process [J]. Journal of the American Chemical Society, 2014, 136(2): 622–625. DOI: https://doi.org/10.1021/ja411509g.

    Article  Google Scholar 

  52. DOCAMPO P, HANUSCH F C, STRANKS S D, DÖBLINGER M, FECKL J M, EHRENSPERGER M, MINAR N K, JOHNSTON M B, SNAITH H J, BEIN T. Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells [J]. Advanced Energy Materials, 2014, 4(14): 1400355. DOI: https://doi.org/10.1002/aenm.201400355.

    Article  Google Scholar 

  53. XIAO Zheng-guo, BI Cheng, SHAO Yu-chuan, DONG Qing-feng, WANG Qi, YUAN Yong-bo, WANG Cheng-gong, GAO Yong-li, HUANG Jin-song. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers [J]. Energy & Environmental Science, 2014, 7(8): 2619–2623. DOI: https://doi.org/10.1039/C4EE01138D.

    Article  Google Scholar 

  54. BI Cheng, WANG Qi, SHAO Yu-chuan, YUAN Yong-bo, XIAO Zheng-guo, HUANG Jin-song. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J]. Nature Communications, 2015, 6(1): 7747. DOI: https://doi.org/10.1038/ncomms8747.

    Article  Google Scholar 

  55. WANG Qi, DONG Qing-feng, LI Tao, GRUVERMAN A, HUANG Jin-song. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells [J]. Advanced Materials, 2016, 28(31): 6734–6739. DOI: https://doi.org/10.1002/adma.201600969.

    Article  Google Scholar 

  56. KIM J H, WILLIAMS S T, CHO N, CHUEH C C, JEN A K Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating [J]. Advanced Energy Materials, 2015, 5(4): 1401229. DOI: https://doi.org/10.1002/aenm.201401229.

    Article  Google Scholar 

  57. BARROWS A T, PEARSON A J, KWAK C K, DUNBAR A D F, BUCKLEY A R, LIDZEY D G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition [J]. Energy & Environmental Science, 2014, 7(9): 2944–2950. DOI: https://doi.org/10.1039/C4EE01546K.

    Article  Google Scholar 

  58. VAK D, HWANG K, FAULKS A, JUNG Y S, CLARK N, KIM D Y, WILSON G J, WATKINS S E. 3D printer-based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells [J]. Advanced Energy Materials, 2015, 5(4): 1401539. DOI: https://doi.org/10.1002/aenm.201401539

    Article  Google Scholar 

  59. WU Han, ZHANG Chu-jun, DING Kong-xian, WANG Li-juan, GAO Yong-li, YANG Jun-liang. Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition [J]. Organic Electronics, 2017, 45: 302–307. DOI: https://doi.org/10.1016/j.orgel.2017.03.017.

    Article  Google Scholar 

  60. PENG Yong-yi, CHENG Yu-diao, WANG Chun-hua, ZHANG Chu-jun, XIA Hua-yan, HUANG Ke-qing, TONG Si-chao, HAO Xiao-tao, YANG Jun-liang. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition [J]. Organic Electronics, 2018, 58: 153–158. DOI: https://doi.org/10.1016/j.orgel.2018.04.020.

    Article  Google Scholar 

  61. HU Qiao, WU Han, SUN Jia, YAN Dong-hang, GAO Yong-li, YANG Jun-liang. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading [J]. Nanoscale, 2016, 8(9): 5350–5357. DOI: https://doi.org/10.1039/C5NR08277C.

    Article  Google Scholar 

  62. LI Heng-yue, GUO Hui, TONG Si-chao, HUANG Ke-qing, ZHANG Chu-jun, WANG Xiao-feng, ZHANG Dou, CHEN Xiao-hua, YANG Jun-liang. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing [J]. Journal of Physics D: Applied Physics, 2019, 52(11): 115501. DOI: https://doi.org/10.1088/1361-6463/aafbf3.

    Article  Google Scholar 

  63. TONG Si-chao, WU Han, ZHANG Chu-jun, LI Shui-gen, WANG Chun-hua, SHEN Jian-qiang, XIAO Si, HE Jun, YANG Jun-liang, SUN Jia, GAO Yong-li. Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition [J]. Organic Electronics, 2017, 49: 347–354. DOI: https://doi.org/10.1016/j.orgel.2017.07.011.

    Article  Google Scholar 

  64. DENG Ye-hao, ZHENG Xiao-peng, BAI Yang, WANG Qi, ZHAO Jing-jing, HUANG Jin-song. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules [J]. Nature Energy, 2018, 3(7): 560–566. DOI: https://doi.org/10.1038/s41560-018-0153-9.

    Article  Google Scholar 

  65. DENG Ye-hao, DONG Qing-feng, BI Cheng, YUAN Yong-bo, HUANG Jin-song. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer [J]. Advanced Energy Materials, 2016, 6(11): 1600372. DOI: https://doi.org/10.1002/aenm.201600372.

    Article  Google Scholar 

  66. TANG Shi, DENG Ye-hao, ZHENG Xiao-peng, BAI Yang, FANG Yan-jun, DONG Qing-feng, WEI Hao-tong, HUANG Jin-song. Composition engineering in doctor-blading of perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(18): 1700302. DOI: https://doi.org/10.1002/aenm.201700302.

    Article  Google Scholar 

  67. WU Wu-qiang, YANG Zhi-bin, RUDD P N, SHAO Yu-chuan, DAI Xue-zeng, WEI Hao-tong, ZHAO Jing-jing, FANG Yan-jun, WANG Qi, LIU Ye, DENG Ye-hao, XIAO Xun, FENG Yuan-xiang, HUANG Jin-song. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells [J]. Science Advances, 2019, 5(3): eaav8925. DOI: https://doi.org/10.1126/sciadv.aav8925.

    Article  Google Scholar 

  68. WU Wu-qiang, WANG Qi, FANG Yan-jun, SHAO Yu-chuan, TANG Shi, DENG Ye-hao, LU Hai-dong, LIU Ye, LI Tao, YANG Zhi-bin, GRUVERMAN A, HUANG Jin-song. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells [J]. Nature Communications, 2018, 9(1): 1625. DOI: https://doi.org/10.1038/s41467-018-04028-8.

    Article  Google Scholar 

  69. JUNG M, JI S G, KIM G, SEOK S II. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications [J]. Chemical Society Reviews, 2019, 48(7): 2011–2038. DOI: https://doi.org/10.1039/C8CS00656C.

    Article  Google Scholar 

  70. HWANG K, JUNG Y S, HEO Y J, SCHOLES F H, WATKINS S E, SUBBIAH J, JONES D J, KIM D Y, VAK D. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J]. Advanced Materials, 2015, 27(7): 1241–1247. DOI: https://doi.org/10.1002/adma.201404598.

    Article  Google Scholar 

  71. WHITAKER J B, KIM D H, LARSON B W, ZHANG Fei, BERRY J J, VAN HEST M F A M, ZHU Kai. Scalable slot-die coating of high-performance perovskite solar cells [J]. Sustainable Energy & Fuels, 2018, 2(11): 2442–2449. DOI: https://doi.org/10.1039/C8SE00368H.

    Article  Google Scholar 

  72. GONG Chen-di, TONG Si-chao, HUANG Ke-qing, LI Heng-yue, HUANG Han, ZHANG Jian, YANG Jun-liang. Flexible planar heterojunction perovskite solar cells fabricated via sequential roll-to-roll microgravure printing and slot-die coating deposition [J]. Solar RRL, 2019: 1900204. DOI: https://doi.org/10.1002/solr.201900204.

  73. HEO J H, LEE M H, JANG M H, IM S H. Highly efficient CH3NH3PbI3−xCl mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating [J]. Journal of Materials Chemistry A, 2016, 4(45): 17636–17642. DOI: https://doi.org/10.1039/C6TA06718B.

    Article  Google Scholar 

  74. ZHANG Chu-jun, LUO Qun, WU Han, LI Heng-yue, LAI Jun-qi, JI Guo-qi, YAN Lin-peng, WANG Xiao-feng, ZHANG Dou, LIN Jian, CHEN Li-wei, YANG Jun-liang, MA Chang-qi. Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells [J]. Organic Electronics, 2017, 45: 190–197. DOI: https://doi.org/10.1016/j.orgel.2017.03.015.

    Article  Google Scholar 

  75. YANG Jun-liang, VAK D, CLARK N, SUBBIAH J, WONG W W H, JONES D J, WATKINS S E, WILSON G. Organic photovoltaic modules fabricated by an industrial gravure printing proofer [J]. Solar Energy Materials and Solar Cells, 2013, 109: 47–55. DOI: https://doi.org/10.1016/j.solmat.2012.10.018.

    Article  Google Scholar 

  76. TONG Si-chao, GONG Chen-di, ZHANG Chu-jun, LIU Gang, ZHANG Dou, ZHOU Cong-hua, SUN Jia, XIAO Si, HE Jun, GAO Yong-li, YANG Jun-liang. Fully-printed, flexible cesium-doped triple cation perovskite photodetector [J]. Applied Materials Today, 2019, 15: 389–397. DOI: https://doi.org/10.1016/j.apmt.2019.03.001.

    Article  Google Scholar 

  77. LI Shao-gang, JIANG Ke-jian, SU Mei-ju, CUI Xue-ping, HUANG Jin-hua, ZHANG Qian-qian, ZHOU Xue-qin, YANG Lian-min, SONG Yan-lin. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells [J]. Journal of Materials Chemistry A, 2015, 3(17): 9092–9097. DOI: https://doi.org/10.1039/C4TA05675B.

    Article  Google Scholar 

  78. EGGERS H, SCHACKMAR F, ABZIEHER T, SUN Qing, LEMMER U, VAYNZOF Y, RICHARDS B S, HERNANDEZ-SOSA G, PAETZOLD U W. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains [J]. Advanced Energy Materials, 2019, 9: 1903184. DOI: https://doi.org/10.1002/aenm.201903184.

    Google Scholar 

  79. RAZZA S, CASTRO-HERMOSA S, DI CARLO A, BROWN T M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology [J]. APL Materials, 2016, 4(9): 091508. DOI: https://doi.org/10.1063/1.4962478.

    Article  Google Scholar 

  80. HE Ming, LI Bo, CUI Xun, JIANG Bei-bei, HE Yan-jie, CHEN Yi-huang, O’NEIL D, SZYMANSKI P, EI-SAYED M A, HUANG Jin-song, LIN Zhi-qun. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells [J]. Nature Communications, 2017, 8(1): 16045. DOI: https://doi.org/10.1038/ncomms16045.

    Article  Google Scholar 

  81. NIE W, TSAI H, ASADPOUR R, BLANCON J C, NEUKIRCH A J, GUPTA G, CROCHET J J, CHHOWALLA M, TRETIAK S, ALAM M A, WANG H L, MOHITE A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains [J]. Science, 2015, 347(6221): 522–525. DOI: https://doi.org/10.1126/science.aaa0472.

    Article  Google Scholar 

  82. YE Fei, CHEN Han, XIE Feng-xian, TANG Wen-tao, YIN Mao-shu, HE Jin-jin, BI En-bing, WANG Yan-bo, YANG Xu-dong, HAN Li-yuan. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells [J]. Energy & Environmental Science, 2016, 9(7): 2295–2301. DOI: https://doi.org/10.1039/C6EE01411A.

    Article  Google Scholar 

  83. CAI Mo-lang, WU Yong-zhen, CHEN Han, YANG Xu-dong, QIANG Ying-huai, HAN Li-yuan. Cost-performance analysis of perovskite solar modules [J]. Advanced Science, 2017, 4(1): 1600269. DOI: https://doi.org/10.1002/advs.201600269.

    Article  Google Scholar 

  84. XIAO Zheng-guo, DONG Qing-feng, BI Cheng, SHAO Yu-chuan, YUAN Yong-bo, HUANG Jin-song. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement [J]. Advanced Materials, 2014, 26(37): 6503–6509. DOI: https://doi.org/10.1002/adma.201401685.

    Article  Google Scholar 

  85. BI Cheng, YUAN Yong-bo, FANG Yan-jun, HUANG Jin-song. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells [J]. Advanced Energy Materials, 2015, 5(6): 1401616. DOI: https://doi.org/10.1002/aenm.201401616.

    Article  Google Scholar 

  86. JEON N J, NOH J H, KIM Y C, YANG W S, RYU S, SEOK S [II. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells [J]. Nature Materials, 2014, 13(9): 897–903. DOI: https://doi.org/10.1038/nmat4014.

    Article  Google Scholar 

  87. NG A, REN Zhi-wei, HU Han-lin, FONG P W K, SHEN Qian, CHEUNG S H, QIN Ping-li, LEE J W, DJURIŠIĆ A B, SO S K, LI Gang, YANG Yang, SURYA C. A cryogenic process for antisolvent-free high-performance perovskite solar cells [J]. Advanced Materials, 2018, 30(44): 1804402. DOI: https://doi.org/10.1002/adma.201804402.

    Article  Google Scholar 

  88. XUE Jing-jing, WANG Rui, WANG Kai-li, WANG Zhao-kui, YAVUZ I, WANG Yang, YANG Ying-guo, GAO Xing-yu, HUANG Tian-yi, NURYYEVA S, LEE J W, DUAN Yu, LIAO Liang-sheng, KANER R, YANG Yang. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film [J]. Journal of the American Chemical Society, 2019, 141(35): 13948–13953. DOI: https://doi.org/10.1021/jacs.9b06940.

    Article  Google Scholar 

  89. ZHOU Zhong-min, WANG Zai-wei, ZHOU Yuan-yuan, PANG Shu-ping, WANG Dong, XU Hong-xia, LIU Zhi-hong, PADTURE N P, CUI Guang-lei. Methylaminegas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells [J]. Angewandte Chemie International Edition, 2015, 54(33): 9705–9709. DOI: https://doi.org/10.1002/anie.201504379.

    Article  Google Scholar 

  90. YANG Meng-jin, ZHANG Tai-yang, SCHULZ P, LI Zhen, LI Ge, KIM D H, GUO Nan-jie, BERRY J J, ZHU Kai, ZHAO Yi-xin. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening [J]. Nature Communications, 2016, 7: 12305. DOI: https://doi.org/10.1038/ncomms12305.

    Article  Google Scholar 

  91. SHAO Yu-chuan, XIAO Zheng-guo, BI Cheng, YUAN Yong-bo, HUANG Jin-song. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J]. Nature Communications, 2014, 5(1): 5784. DOI: https://doi.org/10.1038/ncomms6784.

    Article  Google Scholar 

  92. BAI Yang, DONG Qing-feng, SHAO Yu-chuan, DENG Ye-hao, WANG Qi, SHEN Liang, WANG Dong, WEI Wei, HUANG Jin-song. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene [J]. Nature Communications, 2016, 7(1): 12806. DOI: https://doi.org/10.1038/ncomms12806.

    Article  Google Scholar 

  93. ZHENG Xiao-peng, CHEN Bo, DAI Jun, FANG Yan-jun, BAI Yang, LIN Yu-ze, WEI Hao-tong, ZENG Xiao-cheng, HUANG Jin-song. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations [J]. Nature Energy, 2017, 2(7): 17102. DOI: https://doi.org/10.1038/nenergy.2017.102.

    Article  Google Scholar 

  94. LIN Yun, BAI Yang, FANG Yan-jun, CHEN Zhao-lai, YANG Shuang, ZHENG Xiao-peng, TANG Shi, LIU Ye, ZHAO Jing-jing, HUANG Jin-song. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures [J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 654–658. DOI: https://doi.org/10.1021/acs.jpclett.7b02679.

    Article  Google Scholar 

  95. HUEH C C, LI Chang-zhi, JEN A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells [J]. Energy & Environmental Science, 2015, 8(4): 1160–1189. DOI: https://doi.org/10.1039/C4EE03824J.

    Article  Google Scholar 

  96. ZHOU Huan-ping, CHEN Qi, LI Gang, LUO Song, SONG Tze-bing, DUAN Hsin-sheng, HONG Zi-ruo, YOU Jing-bi, LIU Yong-sheng, YANG Yang. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542–546. DOI: https://doi.org/10.1126/science.1254050.

    Article  Google Scholar 

  97. PATHAK S K, ABATE A, RUCKDESCHEL P, ROOSE B, GÖDEL K C, VAYNZOF Y, SANTHALA A, WATANABE S I, HOLLMAN D J, NOEL N, SEPE A, WIESNER U, FRIEND R, SNAITH H J, STEINER U. Performance and stability enhancement of dye-sensitized and perovskite solar cells by al doping of TiO2 [J]. Advanced Functional Materials, 2014, 24(38): 6046–6055. DOI: https://doi.org/10.1002/adfm.201401658.

    Article  Google Scholar 

  98. LIU Zong-hao, HU Jun-nan, JIAO Hao-yang, LI Liang, ZHENG Guanhaojie, CHEN Yi-hua, HUANG Yuan, ZHANG Qing, SHEN Chao, CHEN Qi, ZHOU Huan-ping. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells [J]. Advanced Materials, 2017, 29(23): 1606774. DOI: https://doi.org/10.1002/adma.201606774.

    Article  Google Scholar 

  99. TAN Hai-ren, JAIN A, VOZNYY O, LAN Xin-zheng, ARQUER F P G D, FAN J Z, QUINTERO-BERMUDEZ R, YUAN Ming-jian, ZHANG Bo, ZHAO Yi-cheng, FAN Feng-jia, LI Pei-cheng, QUAN Li-na, ZHAO Yong-biao, LU Zheng-hong, YANG Zhen-yu, HOOGLAND S, SARGENT E H. Efficient and stable solution-processed planar perovskite solar cells via contact passivation [J]. Science, 2017, 355(6326): 722–726. DOI: https://doi.org/10.1126/science.aai9081.

    Article  Google Scholar 

  100. UAN Zhong-cheng, WU Zhong-wei, BAI Sai, XIA Zhou-hui, XU Wei-dong, SONG Tao, WU Hai-hua, XU Lu-hai, SI Jun-jie, JIN Yi-zheng, SUN Bao-quan. Hot-electron injection in a sandwiched TiOx–Au–TiOx structure for high-performance planar perovskite solar cells [J]. Advanced Energy Materials, 2015, 5(10): 1500038. DOI: https://doi.org/10.1002/aenm.201500038.

    Article  Google Scholar 

  101. TAVAKOLI M M, YADAV P, TAVAKOLI R, KONG Jing. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability [J]. Advanced Energy Materials, 2018, 8(23): 1800794. DOI: https://doi.org/10.1002/aenm.201800794.

    Article  Google Scholar 

  102. BAENA J P C, STEIER L, TRESS W, SALIBA M, NEUTZNER S, MATSUI T, GIORDANO F, JESPER JACOBSSON T, KANDADA A R S, M. ZAKEERUDDIN S, PETROZZA A, ABATE A, KHAJA NAZEERUDDIN M, GRÄTZEL M, HAGFELDT A. Highly efficient planar perovskite solar cells through band alignment engineering [J]. Energy & Environmental Science, 2015, 8(10): 2928–2934. DOI: https://doi.org/10.1039/C5EE02608C.

    Article  Google Scholar 

  103. RAO H S, CHEN Bai-xue, LI Wen-guang, XU Yang-fan, CHEN Hong-yan, KUANG Dai-bin, SU Cheng-yong. Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells [J]. Advanced Functional Materials, 2015, 25(46): 7200–7207. DOI: https://doi.org/10.1002/adfm.201501264.

    Article  Google Scholar 

  104. HALVANI ANARAKI E, KERMANPUR A, STEIER L, DOMANSKI K, MATSUI T, TRESS W, SALIBA M, ABATE A, GRÄTZEL M, HAGFELDT A, CORREABAENA J P. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide [J]. Energy & Environmental Science, 2016, 9(10): 3128–3134. DOI: https://doi.org/10.1039/C6EE02390H.

    Article  Google Scholar 

  105. WANG Chun-hua, ZHANG Chu-jun, WANG Shi-tan, LIU Gang, XIA Hua-yan, TONG Si-chao, HE Jun, NIU Dong-mei, ZHOU Cong-hua, DING Kong-xian, GAO Yong-li, YANG Jun-liang. Low–temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells [J]. Solar RRL, 2018, 2(2): 1700209. DOI: https://doi.org/10.1002/solr.201700209.

    Article  Google Scholar 

  106. HUANG Ke-qing, PENG Yong-yi, GAO Ya-xin, SHI Jiao, LI Heng-yue, MO Xin-di, HUANG Han, GAO Yong-li, DING Li-ming, YANG Jun-liang. High-performance flexible perovskite solar cells via precise control of electron transport layer [J]. Advanced Energy Materials, 2019, 9(44): 1901419. DOI: https://doi.org/10.1002/aenm.201901419.

    Article  Google Scholar 

  107. HUANG Ke-qing, LI Heng-yue, ZHANG Chu-jun, GAO Ya-xin, LIU Tian-jiao, ZHANG Jian, GAO Yong-li, PENG Yong-yi, DING Li-ming, YANG Jun-liang. Highly efficient perovskite solar cells processed under ambient conditions using in situ substrate-heating-assisted deposition [J]. Solar RRL, 2019, 3(3): 1800318. DOI: https://doi.org/10.1002/solr.201800318.

    Article  Google Scholar 

  108. WANG Chun-hua, YANG Jun-liang. Interface modification for organic and perovskite solar cells [J]. Science China Materials, 2016, 59(9): 743–756. DOI: https://doi.org/10.1007/s40843-016-5080-1.

    Article  Google Scholar 

  109. GAO Ya-xin, DONG Ya-nan, HUANG Ke-qing, ZHANG Chu-jun, LIU Biao, WANG Shi-tan, SHI Jiao, XIE Hai-peng, HUANG Han, XIAO Si, HE Jun, GAO Yong-li, HATTON R A, YANG Jun-liang. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing [J]. ACS Photonics, 2018, 5(10): 4104–4110. DOI: https://doi.org/10.1021/acsphotonics.8b00783.

    Article  Google Scholar 

  110. JIANG Qi, ZHANG Liu-qi, WANG Hao-lin, YANG Xiao-lei, MENG Jun-hua, LIU Heng, YIN Zhi-gang, WU Jin-liang, ZHANG Xing-wang, YOU Jing-bi. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells [J]. Nature Energy, 2016, 2(1): 1–7. DOI: https://doi.org/10.1038/nenergy.2016.177.

    Google Scholar 

  111. KE Wei-jun, ZHAO De-wei, XIAO Chuan-xiao, WANG Chang-lei, CIMAROLI A J, GRICE C R, YANG Meng-jin, LI Zhen, JIANG Chun-sheng, AL-JASSIM M, ZHU Kai, KANATZIDIS M G, FANG Guo-jia, YAN Yan-fa. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2016, 4(37): 14276–14283. DOI: https://doi.org/10.1039/C6TA05095F.

    Article  Google Scholar 

  112. WU Wu-qiang, CHEN De-hong, CHENG Yi-bing, CARUSO R A. Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics [J]. Solar RRL, 2017, 1(11): 1700117. DOI: https://doi.org/10.1002/solr.201700117.

    Article  Google Scholar 

  113. YANG Dong, YANG Rui-xia, WANG Kai, WU Cong-cong, ZHU Xue-jie, FENG Jiang-shan, REN Xiao-dong, FANG Guo-jia, PRIYA S, LIU Sheng-zhong (Frank). High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 [J]. Nature Communications, 2018, 9(1): 1–11. DOI: https://doi.org/10.1038/s41467-018-05760-x.

    Article  Google Scholar 

  114. HU Man-man, ZHANG Luo-zheng, SHE Su-yang, WU Jian-chang, ZHOU Xian-yong, LI Xiang-nan, WANG Deng, MIAO Jun, MI Guo-jun, CHEN Hong, TIAN Yan-qing, XU Bao-min, CHENG Chun. Electron transporting bilayer of SnO2 and TiO2 nanocolloid enables highly efficient planar perovskite solar cells [J]. Solar RRL, 2019: 1900331. DOI: https://doi.org/10.1002/solr.201900331.

  115. HUI Wei, YANG Ying-guo, XU Quan, GU Hao, FENG Shang-lei, SU Zhen-huang, ZHANG Miao-ran, WANG Jiaou, LI Xiao-dong, FANG Jun-feng, XIA Fei, XIA Ying-dong, CHEN Yong-hua, GAO Xing-yu, HUANG Wei. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells [J]. Advanced Materials, 2019, 9: 1906374. DOI: https://doi.org/10.1002/adma.201906374.

    Google Scholar 

  116. ZHU Peng-chen, GU Shuai, LUO Xin, GAO Yuan, LI Song-lin, ZHU Jia, TAN Hai-ren. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer [J]. Advanced Energy Materials, 2019, 10(3): 1903083. DOI: https://doi.org/10.1002/aenm.201903083.

    Article  Google Scholar 

  117. CHEN Jin-bo, DONG Hua, ZHANG Lin, LI Jing-rui, JIA Fu-hao, JIAO Bo, JIE Xu, HOU Xun, LIU Jian, WU Zhao-xin. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells exceeding 22% [J]. Journal of Materials Chemistry A, 2020. DOI: https://doi.org/10.1039/C9TA11344D.

  118. TIWANA P, DOCAMPO P, JOHNSTON M B, SNAITH H J, HERZ L M. Electron Mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells [J]. ACS Nano, 2011, 5(6): 5158–5166. DOI: https://doi.org/10.1021/nn201243y.

    Article  Google Scholar 

  119. HEO J H, LEE M H, HAN H J, PATIL R B, YU J S, IM S H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells [J]. Journal of Materials Chemistry A, 2016, 4(5): 1572–1578. DOI: https://doi.org/10.1039/C5TA09520D.

    Article  Google Scholar 

  120. YANG Jin-li, SIEMPELKAMP B D, MOSCONI E, DE ANGELIS F, KELLY T L. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO [J]. Chemistry of Materials, 2015, 27(12): 4229–4236. DOI: https://doi.org/10.1021/acs.chemmater.5b01598.

    Article  Google Scholar 

  121. AZMI R, HWANG S, YIN Wen-ping, KIM T W, AHN T K, JANG S Y. High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers [J]. ACS Energy Letters, 2018, 3(6): 1241–1246. DOI: https://doi.org/10.1021/acsenergylett.8b00493.

    Article  Google Scholar 

  122. MAHDI TAVAKOLI M, TAVAKOLI R, YADAV P, KONG Jing. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells [J]. Journal of Materials Chemistry A, 2019, 7(2): 679–686. DOI: https://doi.org/10.1039/C8TA10857A.

    Article  Google Scholar 

  123. QIN Min-chao, MA Jun-jie, KE Wei-jun, QIN Ping-li, LEI Hong-wei, TAO Hong, ZHENG Xiao-lu, XIONG Liang-bin, LIU Qin, CHEN Zhi-liang, LU Jun-zheng, YANG Guang, FANG Guo-jia. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers [J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8460–8466. DOI: https://doi.org/10.1021/acsami.5b12849.

    Article  Google Scholar 

  124. CHEN Peng, YIN Xing-tian, QUE Mei-dan, LIU Xiao-bin, QUE Wen-xiu. Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2017, 5(20): 9641–9648. DOI: https://doi.org/10.1039/C7TA00183E.

    Article  Google Scholar 

  125. YOON S, KIM S J, KIM H S, PARK J S, KI HAN II K, JUNG J W, PARK M. Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells [J]. Nanoscale, 2017, 9(42): 16305–16312. DOI: https://doi.org/10.1039/C7NR05695H.

    Article  Google Scholar 

  126. LING Xu-feng, YUAN Jian-yu, LIU Dong-yang, WANG Yong-jie, ZHANG Yan-nan, CHEN Si, WU Hai-hua, JIN Feng, WU Fu-peng, SHI Guo-zheng, TANG Xun, ZHENG Jia-wei, LIU Sheng-zhong (Frank), LIU Zhi-ke, MA Wan-li. Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23181–23188. DOI: https://doi.org/10.1021/acsami.7b05113.

    Article  Google Scholar 

  127. WANG Zeng-hua, LOU Jun-jie, ZHENG Xiao-jia, ZHANG Wen-hua, QIN Yong. Solution processed Nb2O5 electrodes for high efficient ultraviolet light stable planar perovskite solar cells [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7421–7429. DOI: https://doi.org/10.1021/acssuschemeng.9b00991.

    Article  Google Scholar 

  128. SHIN S S, YANG W S, YEOM E J, LEE S J, JEON N J, JOO Y C, PARK I J, NOH J H, SEOK S II. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2016, 7(10): 1845–1851. DOI: https://doi.org/10.1021/acs.jpclett.6b00295.

    Article  Google Scholar 

  129. SHIN S S, YEOM E J, YANG W S, HUR S, KIM M G, IM J, SEO J, NOH J H, SEOK S II. Colloidally prepared la-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells [J]. Science, 2017, 356(6334): 167–171. DOI: https://doi.org/10.1126/science.aam6620.

    Article  Google Scholar 

  130. SHIN S S, SUK J H, KANG B J, YIN W P, LEE S J, NOH J H, AHN T K, ROTERMUND F, CHO I S, SEOK S II. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells [J]. Energy & Environmental Science, 2019. DOI: https://doi.org/10.1039/C8EE03672A.

  131. GUO Heng, CHEN Hai-yuan, ZHANG Hai-yan, HUANG Xu, YANG Jian, WANG Bo-jun, LI Yu-lan, WANG Li-ping, NIU Xiao-bin, WANG Zhi-ming. Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency [J]. Nano Energy, 2019, 59: 1–9. DOI: https://doi.org/10.1016/j.nanoen.2019.01.059.

    Article  Google Scholar 

  132. LIU Jiang, GAO Cheng, LUO Li-zhu, YE Qin-yan, HE Xu-lin, OUYANG Liang-qi, GUO Xiao-wei, ZHUANG Da-ming, LIAO Cheng, MEI Jun, LAU W. Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2015, 3(22): 11750–11755. DOI: https://doi.org/10.1039/C5TA01200G.

    Article  Google Scholar 

  133. DONG Jia, WU Ji-huai, JIA Jin-biao, FAN Le-qing, LIN Yu, LIN Jian-ming, HUANG Miao-liang. Efficient perovskite solar cells employing a simply-processed CdS electron transport layer [J]. Journal of Materials Chemistry C, 2017, 5(38): 10023–10028. DOI: https://doi.org/10.1039/C7TC03343E.

    Article  Google Scholar 

  134. XU Zhe, WU Ji-huai, YANG Yu-qian, LAN Zhang, LIN Jian-ming. High-efficiency planar hybrid perovskite solar cells using indium sulfide as electron transport layer [J]. ACS Applied Energy Materials, 2018, 1(8): 4050–4056. DOI: https://doi.org/10.1021/acsaem.8b00726.

    Article  Google Scholar 

  135. YIN Guan-nan, ZHAO Huan, FENG Jiang-shan, SUN Jie, YAN Jun-qing, LIU Zhi-ke, LIN Sheng-huang, LIU Sheng-zhong (Frank). Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2018, 6(19): 9132–9138. DOI: https://doi.org/10.1039/C8TA01143E.

    Article  Google Scholar 

  136. HUANG Peng, YUAN Li-gang, ZHANG Kai-cheng, CHEN Qiao-yun, ZHOU Yi, SONG Bo, LI Yong-fang. Room-temperature and aqueous solution-processed two-dimensional TiS2 as an electron transport layer for highly efficient and stable planar n–i–p perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14796–14802. DOI: https://doi.org/10.1021/acsami.8b03225.

    Article  Google Scholar 

  137. ZHAO Xiao-juan, LIU Shuang-shuang, ZHANG Hai-tao, CHANG Sheng-yung, HUANG Wen-chao, ZHU Bo-wen, SHEN Yan, SHEN Cai, WANG De-yu, YANG Yang, WANG Ming-kui. 20% efficient perovskite solar cells with 2D electron transporting layer [J]. Advanced Functional Materials, 2019, 29(4): 1805168. DOI: https://doi.org/10.1002/adfm.201805168.

    Article  Google Scholar 

  138. KIM H S, LEE C R, IM J H, LEE K B, MOEHL T, MARCHIORO A, MOON S J, HUMPHRY-BAKER R, YUM J H, MOSER J E, GRÄTZEL M, PARK N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Scientific Reports, 2012, 2: 591. DOI: https://doi.org/10.1038/srep00591.

    Article  Google Scholar 

  139. JIANG Qi, CHU Ze-ma, WANG Peng-yang, YANG Xiao-lei, LIU Heng, WANG Ye, YIN Zhi-gang, WU Jin-liang, ZHANG Xing-wang, YOU Jing-bi. Planar-structure perovskite solar cells with efficiency beyond 21% [J]. Advanced Materials, 2017, 29(46): 1703852. DOI: https://doi.org/10.1002/adma.201703852.

    Article  Google Scholar 

  140. HEO J H, IM S H, NOH J H, MANDAL T N, LIM C S, CHANG J A, LEE Y H, KIM H J, SARKAR A, NAZEERUDDIN M K, GRÄTZEL M, SEOK S II. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nature Photonics, 2013, 7(6): 486–491. DOI: https://doi.org/10.1038/nphoton.2013.80.

    Article  Google Scholar 

  141. WANG Zhi-ping, LIN Qian-qian, WENGER B, CHRISTOFORO M G, LIN Y H, KLUG M T, JOHNSTON M B, HERZ L M, SNAITH H J. High irradiance performance of metal halide perovskites for concentrator photovoltaics [J]. Nature Energy, 2018, 3(10): 855–861. DOI: https://doi.org/10.1038/s41560-018-0220-2.

    Article  Google Scholar 

  142. SHI Hui, LIU Cong-cong, JIANG Qing-lin, XU Jing-kun. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review [J]. Advanced Electronic Materials, 2015, 1(4): 1500017. DOI: https://doi.org/10.1002/aelm.201500017.

    Article  Google Scholar 

  143. HWANG J, AMY F, KAHN A. Spectroscopic study on sputtered PEDOT·PSS: Role of surface PSS layer [J]. Organic Electronics, 2006, 7(5): 387–396. DOI: https://doi.org/10.1016/j.orgel.2006.04.005.

    Article  Google Scholar 

  144. LI Gang, ZHU Rui, YANG Yang. Polymer solar cells [J]. Nature Photonics, 2012, 6(3): 153–161. DOI: https://doi.org/10.1038/nphoton.2012.11.

    Article  Google Scholar 

  145. YANG Jun-liang, YAN Dong-hang, JONES T S. Molecular template growth and its applications in organic electronics and optoelectronics [J]. Chemical Reviews, 2015, 115(11): 5570–5603. DOI: https://doi.org/10.1021/acs.chemrev.5b00142.

    Article  Google Scholar 

  146. YANG Jun-liang, YAN Dong-hang. Weak epitaxy growth of organic semiconductor thin films [J]. Chemical Society Reviews, 2009, 38(9): 2634. DOI: https://doi.org/10.1039/b815723p.

    Article  Google Scholar 

  147. WANG Chun-hua, LI Yuan, ZHANG Chu-jun, SHI Li-yang, TONG Si-chao, GUO Bin, ZHANG Jian, HE Jun, GAO Yong-li, SU Chao-hao, YANG Jun-liang. Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer [J]. Journal of Power Sources, 2018, 390: 134–141. DOI: https://doi.org/10.1016/j.jpowsour.2018.04.049.

    Article  Google Scholar 

  148. HUANG Ke-qing, WANG Chun-hua, ZHANG Chu-jun, TONG Si-chao, LI Heng-yue, LIU Biao, GAO Ya-xin, DONG Ya-nan, GAO Yong-li, PENG Yong-yi, YANG Jun-liang. Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity [J]. Organic Electronics, 2018, 55: 140–145. DOI: https://doi.org/10.1016/j.orgel.2018.01.029.

    Article  Google Scholar 

  149. HUANG Ju, WANG Chun-hua, LIU Zi-ye, QIU Xue-qing, YANG Jun-liang, CHANG Jing-jing. Simultaneouly enhanced durability and performance by employing dopamine copolymerized PEDOT with high work function and water-proofness for inverted perovskite solar cells [J]. Journal of Materials Chemistry C, 2018, 6(9): 2311–2318. DOI: https://doi.org/10.1039/C7TC05276F.

    Article  Google Scholar 

  150. WANG Chun-hua, ZHANG Chu-jun, TONG Si-chao, SHEN Jian-qiang, WANG Can, LI You-zhen, XIAO Si, HE Jun, ZHANG Jian, GAO Yong-li, YANG Jun-liang. Air-induced high-quality CH3NH3PbI3 thin film for efficient planar heterojunction perovskite solar cells [J]. The Journal of Physical Chemistry C, 2017, 121(12): 6575–6580. DOI: https://doi.org/10.1021/acs.jpcc.7b00981.

    Article  Google Scholar 

  151. WANG Chun-hua, ZHANG Chu-jun, HUANG Yu-lan, TONG Si-chao, WU Han, ZHANG Jian, GAO Yong-li, YANG Jun-liang. Degradation behavior of planar heterojunction CH3NH3PbI3 perovskite solar cells [J]. Synthetic Metals, 2017, 227: 43–51. DOI: https://doi.org/10.1016/j.synthmet.2017.02.022.

    Article  Google Scholar 

  152. WU Run-sheng, YANG Jun-liang, XIONG Jian, LIU Peng, ZHOU Cong-hua, HUANG Han, GAO Yong-li, YANG Bing-chu. Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage [J]. Organic Electronics, 2015, 26: 265–272. DOI: https://doi.org/10.1016/j.orgel.2015.07.057.

    Article  Google Scholar 

  153. WU Run-sheng, YANG Bing-chu, ZHANG Chu-jun, HUANG Yu-lan, CUI Yan-xia, LIU Peng, ZHOU Cong-hua, HAO Yu-ying, GAO Yong-li, YANG Jun-liang. Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods [J]. The Journal of Physical Chemistry C, 2016, 120(13): 6996–7004. DOI: https://doi.org/10.1021/acs.jpcc.6b00309

    Article  Google Scholar 

  154. XIONG Jian, YANG Bing-chu, WU Run-sheng, CAO Cheng-hao, HUANG Yu-lan, LIU Cheng-bin, HU Zhi-kun, HUANG Han, GAO Yong-li, YANG Jun-liang. Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells [J]. Organic Electronics, 2015, 24: 106–112. DOI: https://doi.org/10.1016/j.orgel.2015.05.028.

    Article  Google Scholar 

  155. LIU Yao, BAG M, RENNA L A, PAGE Z A, KIM P, EMRICK T, VENKATARAMAN D, RUSSELL T P. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells [J]. Advanced Energy Materials, 2016, 6(2): 1501606. DOI: https://doi.org/10.1002/aenm.201501606.

    Article  Google Scholar 

  156. XIONG Jian, YANG Jun-liang, YANG Bing-chu, ZHOU Cong-hua, HU Xu, XIE Hai-peng, HUANG Han, GAO Yong-li. Efficient and stable inverted polymer solar cells using TiO2 nanoparticles and analysized by Mott-Schottky capacitance [J]. Organic Electronics, 2014, 15(8): 1745–1752. DOI: https://doi.org/10.1016/j.orgel.2014.04.041.

    Article  Google Scholar 

  157. XIONG Jian, YANG Bing-chu, YUAN Jun, FAN Ling, HU Xu, XIE Hai-peng, LYU Lu, CUI Rui-li, ZOU Ying-ping, ZHOU Cong-hua, NIU Dong-mei, GAO Yong-li, YANG Jun-liang. Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer [J]. Organic Electronics, 2015, 17: 253–261. DOI: https://doi.org/10.1016/j.orgel.2014.12.023.

    Article  Google Scholar 

  158. XIONG Jian, YANG Bing-chu, ZHOU Cong-hua, YANG Jun-liang, DUAN Hai-chao, HUANG Wen-long, ZHANG Xiang, XIA Xing-da, ZHANG Lei, HUANG Han, GAO Yong-li. Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer [J]. Organic Electronics, 2014, 15(4): 835–843. DOI: https://doi.org/10.1016/j.orgel.2014.01.024.

    Article  Google Scholar 

  159. XIONG Jian, YANG Bing-chu, CAO Cheng-hao, WU Run-sheng, HUANG Yu-lan, SUN Jia, ZHANG Jian, LIU Cheng-bin, TAO Shao-hua, GAO Yong-li, YANG Jun-liang. Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer [J]. Organic Electronics, 2016, 30: 30–35. DOI: https://doi.org/10.1016/j.orgel.2015.12.010.

    Article  Google Scholar 

  160. CAO Cheng-hao, ZHANG Chu-jun, YANG Jun-liang, SUN Jia, PANG Shu-ping, WU Han, WU Run-sheng, GAO Yong-li, LIU Cheng-bin. Iodine and chlorine element evolution in CH3NH3PbI3−xClx thin films for highly efficient planar heterojunction perovskite solar cells [J]. Chemistry of Materials, 2016, 28(8): 2742–2749. DOI: https://doi.org/10.1021/acs.chemmater.6b00429.

    Article  Google Scholar 

  161. LIM K G, KIM H B, JEONG J, KIM H, KIM J Y, LEE T W. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function [J]. Advanced Materials, 2014, 26(37): 6461–6466. DOI: https://doi.org/10.1002/adma.201401775.

    Article  Google Scholar 

  162. ZUO Chuan-tian, DING Li-ming. Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells [J]. Advanced Energy Materials, 2017, 7(2): 1601193. DOI: https://doi.org/10.1002/aenm.201601193.

    Article  Google Scholar 

  163. LIU Dong-yang, LI Yong, YUAN Jian-yu, HONG Qiu-ming, SHI Guo-zheng, YUAN Da-xing, WEI Jian, HUANG Chen-chao, TANG Jian-xin, FUNG M K. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers [J]. Journal of Materials Chemistry A, 2017, 5(12): 5701–5708. DOI: https://doi.org/10.1039/C6TA10212C.

    Article  Google Scholar 

  164. JIANG Kui, WU Fei, ZHANG Guang-ye, Y. CHOW P C, MA Chao, LI Shu-fang, SING WONG K, ZHU Lin-na, YAN He. Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss [J]. Journal of Materials Chemistry A, 2019, 7(38): 21662–21667. DOI: https://doi.org/10.1039/C9TA08995K.

    Article  Google Scholar 

  165. XIA Yi-jie, SUN Kuan, CHANG Jing-jing, OUYANG Jian-yong. Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2015, 3(31): 15897–15904. DOI: https://doi.org/10.1039/C5TA03456F.

    Article  Google Scholar 

  166. MALINKIEWICZ O, YELLA A, LEE Y HIN M K, BOLINK H J. Perovskite solar cells employing organic charge-transport layers [J]. Nature Photonics, 2014, 8(2): 128–132. DOI: https://doi.org/10.1038/nphoton.2013.341.

    Article  Google Scholar 

  167. HÖCKER J, KIERMASCH D, RIEDER P, TVINGSTEDT K, BAUMANN A, DYAKONOV V. Efficient solution processed CH3NH3PbI3 perovskite solar cells with polytpd hole transport layer [J]. Zeitschrift für Naturforschung A, 2019, 74(8): 665–672. DOI: https://doi.org/10.1515/zna-2019-0127.

    Article  Google Scholar 

  168. INTANIWET A, KEDDIE J L, SHKUNOV M, SELLIN P J. High charge-carrier mobilities in blends of poly(triarylamine) and TIPS-pentacene leading to better performing X-ray sensors [J]. Organic Electronics, 2011, 12(11): 1903–1908. DOI: https://doi.org/10.1016/j.orgel.2011.08.003.

    Article  Google Scholar 

  169. LEEM D S, WÖBKENBERG P, HUANG Jing-song, ANTHOPOULOS T D, BRADLEY D D C, DEMELLO J C. Micron-scale patterning of high conductivity poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) for organic field-effect transistors [J]. Organic Electronics, 2010, 11(7): 1307–1312. DOI: https://doi.org/10.1016/j.orgel.2010.04.002.

    Article  Google Scholar 

  170. ZHENG Xiao-peng, DENG Ye-hao, CHEN Bo, WEI Hao-tong, XIAO Xun, FANG Yan-jun, LIN Yu-ze, YU Zhen-hua, LIU Ye, WANG Qi, HUANG Jin-song. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells [J]. Advanced Materials, 2018, 30(52): 1803428. DOI: https://doi.org/10.1002/adma.201803428.

    Article  Google Scholar 

  171. WANG Qi, BI Cheng, HUANG Jin-song. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells [J]. Nano Energy, 2015, 15: 275–280. DOI: https://doi.org/10.1016/j.nanoen.2015.04.029.

    Article  Google Scholar 

  172. SHAO Yu-chuan, YUAN Yong-bo, HUANG Jin-song. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nature Energy, 2016, 1(1): 15001. DOI: https://doi.org/10.1038/nenergy.2015.1.

    Article  Google Scholar 

  173. YOU Jing-bi, MENG Lei, SONG T B, GUO T F, YANG Yang (Michael), CHANG W H, HONG Zi-ruo, CHEN Hua-jun, ZHOU Huan-ping, CHEN Qi, LIU Yong-sheng, DE MARCO N, YANG Yang. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers [J]. Nature Nanotechnology, 2016, 11(1): 75–81. DOI: https://doi.org/10.1038/nnano.2015.230.

    Article  Google Scholar 

  174. ZUO Chuan-tian, DING Li-ming. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells [J]. Small, 2015, 11(41): 5528–5532. DOI: https://doi.org/10.1002/smll.201501330

    Article  Google Scholar 

  175. JENG J Yn, CHEN K C, CHIANG T Y, LIN P Y, TSAI T D, CHANG Y C, GUO T F, CHEN P, WEN T C, HSU Y J. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells [J]. Advanced Materials, 2014, 26(24): 4107–4113. DOI: https://doi.org/10.1002/adma.201306217.

    Article  Google Scholar 

  176. CHEN Wei, WU Yong-zhen, YUE You-feng, LIU Jian, ZHANG Wen-jun, YANG Xu-dong, CHEN Han, BI En-bing, ASHRAFUL I, GRÄTZEL M, HAN Li-yuan. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J]. Science, 2015, 350(6263): 944–948. DOI: https://doi.org/10.1126/science.aad1015

    Article  Google Scholar 

  177. CHEN Wei, ZHOU Ye-cheng, WANG Lin-jing, WU Ying-hui, TU Bao, YU Bin-bin, LIU Fang-zhou, TAM H W, WANG Gan, DJURIŠIĆ A B, HUANG Li, HE Zhu-bing. Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell [J]. Advanced Materials, 2018, 30(20): 1800515. DOI: https://doi.org/10.1002/adma.201800515.

    Article  Google Scholar 

  178. CHOWDHURY T H, AKHTARUZZAMAN M, KAYESH M Emrul, KANEKO R, NODA T, LEE J J, ISLAM A. Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability [J]. Solar Energy, 2018, 171: 652–657. DOI: https://doi.org/10.1016/j.solener.2018.07.022.

    Article  Google Scholar 

  179. YE Sen-yun, SUN Wei-hai, LI Yun-long, YAN Wei-bo, PENG Hai-tao, BIAN Zu-qiang, LIU Zhi-wei, HUANG Chun-hui. CuSCN-based inverted planar perovskite solar cell with an average pce of 15.6% [J]. Nano Letters, 2015, 15(6): 3723–3728. DOI: https://doi.org/10.1021/acs.nanolett.5b00116.

    Article  Google Scholar 

  180. YANG Dao-bin, SANO T, YAGUCHI Y, SUN H, SASABE H, KIDO J. Achieving 20% efficiency for low-temperature–processed inverted perovskite solar cells [J]. Advanced Functional Materials, 2019, 29(12): 1807556. DOI: https://doi.org/10.1002/adfm.201807556.

    Article  Google Scholar 

  181. CHIANG C H, TSENG Z L, WU C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process [J]. Journal of Materials Chemistry A, 2014, 2(38): 15897–15903. DOI: https://doi.org/10.1039/C4TA03674C.

    Article  Google Scholar 

  182. CHEN Chun-chao, HONG Zi-rou, LI Gang, CHEN Qi, ZHOU Huan-ping, YANG Yang. One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive [J]. Journal of Photonics for Energy, 2015, 5(1): 057405. DOI: https://doi.org/10.1117/1.JPE.5.057405.

    Article  Google Scholar 

  183. GUERRERO A, YOU Jing-bi, ARANDA C, KANG Y S, GARCIA-BELMONTE G, ZHOU Huan-ping, BISQUERT J, YANG Yang. Interfacial degradation of planar lead halide perovskite solar cells [J]. ACS Nano, 2016, 10(1): 218–224. DOI: https://doi.org/10.1021/acsnano.5b03687.

    Article  Google Scholar 

  184. XIA Fei, WU Qi-liang, ZHOU Peng-cheng, LI Yi, CHEN Xiang, LIU Qing, ZHU Jun, DAI Song-yuan, LU Ya-lin, YANG Shang-feng. Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer [J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13659–13665. DOI: https://doi.org/10.1021/acsami.5b03525.

    Article  Google Scholar 

  185. KUANG Chao-yang, TANG Gang, JIU Tong-gang, YANG Hui, LIU Hui-biao, LI Bai-ru, LUO Wei-ning, LI Xiao-dong, ZHANG Wen-jun, LU Fu-shen, FANG Jun-feng, LI Yu-liang. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells [J]. Nano Letters, 2015, 15(4): 2756–2762. DOI: https://doi.org/10.1021/acs.nanolett.5b00787.

    Article  Google Scholar 

  186. CHEN Ke, HU Qin, LIU Tang-hao, ZHAO Li-chen, LUO De-ying, WU Jiang, ZHANG Yi-fei, ZHANG Wei, LIU Feng, RUSSELL T P, ZHU Rui, GONG Qi-huang. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells [J]. Advanced Materials, 2016, 28(48): 10718–10724. DOI: https://doi.org/10.1002/adma.201604048.

    Article  Google Scholar 

  187. XIE Cheng-yi, ZHOU Cong-hua, BIN YANG, SHEN Liang, KE Li-li, DING Li-ming, YUAN Yong-bo. Silicon phthalocyanine passivation for fullerene-free perovskite solar cells with efficient electron extraction [J]. Applied Physics Express, 2019, 12(6): 064006. DOI: https://doi.org/10.7567/1882-0786/ab1fb6

    Article  Google Scholar 

  188. CHEN Cheng, LI Hong-ping, DING Xing-dong, CHENG Ming, LI He-nan, XU Li, QIAO Fen, LI Hua-ming, SUN Li-cheng. Molecular engineering of triphenylamine-based non-fullerene electron-transport materials for efficient rigid and flexible perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38970–38977. DOI: https://doi.org/10.1021/acsami.8b15130

    Article  Google Scholar 

  189. BAILIE C D, CHRISTOFORO M G, MAILOA J P, BOWRING A R, UNGER E L, NGUYEN W H, BURSCHKA J, PELLET N, LEE J Z, GRÄTZEL M, NOUFI R, BUONASSISI T, SALLEO A, MCGEHEE M D. Semi-transparent perovskite solar cells for tandems with silicon and CIGS [J]. Energy & Environmental Science, 2015, 8(3): 956–963. DOI: https://doi.org/10.1039/C4EE03322A.

    Article  Google Scholar 

  190. AHN J, HWANG H, JEONG S, MOON J. Metal-nanowire-electrode-based perovskite solar cells: Challenging issues and new opportunities [J]. Advanced Energy Materials, 2017, 7(15): 1602751. DOI: https://doi.org/10.1002/aenm.201602751.

    Article  Google Scholar 

  191. CHEN Hai-ning, YANG Shi-he. Carbon-based perovskite solar cells without hole transport materials: The front runner to the market? [J]. Advanced Materials, 2017, 29(24): 1603994. DOI: https://doi.org/10.1002/adma.201603994.

    Article  Google Scholar 

  192. DAI Xue-zeng, ZHANG Ye, SHEN He-ping, LUO Qiang, ZHAO Xing-yue, LI Jian-bao, LIN Hong. Working from both sides: Composite metallic semitransparent top electrode for high performance perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4523–4531. DOI: https://doi.org/10.1021/acsami.5b10830.

    Article  Google Scholar 

  193. LEE M, KO Y, MIN B K, JUN Y. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate [J]. ChemSusChem, 2016, 9(1): 31–35. DOI: https://doi.org/10.1002/cssc.201501332.

    Article  Google Scholar 

  194. ZHANG Jian-hua, LI Fu-shan, YANG Kai-yu, VEERAMALAI C P, GUO Tai-liang. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode [J]. Applied Surface Science, 2016, 369: 308–313. DOI: https://doi.org/10.1016/j.apsusc.2016.02.104

    Article  Google Scholar 

  195. HAN Kang, XIE Meng-lan, ZHANG Lian-ping, YAN Ling-peng, WEI Jun-feng, JI Guo-qi, LUO Qun, LIN Jian, HAO Yu-ying, MA Chang-qi. Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode [J]. Solar Energy Materials and Solar Cells, 2018, 185: 399–405. DOI: https://doi.org/10.1016/j.solmat.2018.05.048.

    Article  Google Scholar 

  196. XIE Meng-lan, LU Hui, ZHANG Lian-ping, WANG Jie, LUO Qun, LIN Jian, BA Li-xiang, LIU Hong, SHEN Wen-zhong, SHI Li-yi, MA Chang-qi. Fully solution–processed semi–transparent perovskite solar cells with ink–jet printed silver nanowires top electrode [J]. Solar RRL, 2018, 2(2): 1700184. DOI: https://doi.org/10.1002/solr.201700184.

    Article  Google Scholar 

  197. GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I, MOSCONI E, LEE X, MARTINEAU D, NARBEY S, OSWALD F, DE ANGELIS F, GRÄETZEL M, NAZEERUDDIN M K. One-year stable perovskite solar cells by 2D/3D interface engineering [J]. Nature Communications, 2017, 8(1): 1–8. DOI: https://doi.org/10.1038/ncomms15684.

    Article  Google Scholar 

  198. WANG Qi-fei, ZHANG Wen-hao, ZHANG Zhi-hui, LIU Shuang, WU Jia-wen, GUAN Yan-jun, MEI An-yi, RONG Yao-guang, HU Yue, HAN Hong-wei. Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells [J]. Advanced Energy Materials, 2020, 10(5): 1903092. DOI: https://doi.org/10.1002/aenm.201903092.

    Article  Google Scholar 

  199. WEI Zhan-hua, CHEN Hai-ning, YAN Ke-you, YANG Shi-he. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells [J]. Angewandte Chemie International Edition, 2014, 53(48): 13239–13243. DOI: https://doi.org/10.1002/anie.201408638.

    Article  Google Scholar 

  200. ZHANG Fu-guo, YANG Xi-chuan, WANG Hao-xin, CHENG Ming, ZHAO Jiang-hua, SUN Li-cheng. Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode [J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16140–16146. DOI: https://doi.org/10.1021/am504175x.

    Article  Google Scholar 

  201. ZHOU Hua-wei, SHI Yan-tao, DONG Qing-shun, ZHANG Hong, XING Yu-jin, WANG Kai, DU Yi, MA Ting-li. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode [J]. The Journal of Physical Chemistry Letters, 2014, 5(18): 3241–3246. DOI: https://doi.org/10.1021/jz5017069.

    Article  Google Scholar 

  202. ZHANG Chen-xi, LUO Yu-dan, CHEN Xiao-hong, CHEN Yi-wei, SUN Zhuo, HUANG Su-mei. Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents [J]. Nano-Micro Letters, 2016, 8(4): 347–357. DOI: https://doi.org/10.1021/jz5017069.

    Article  Google Scholar 

  203. JIN Yi, CHUMANOV G. Solution-processed planar perovskite solar cell without a hole transport layer [J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12015–12021. DOI: https://doi.org/10.1021/acsami.5b02124.

    Article  Google Scholar 

  204. DENG Ye-hao, BRACKLE C H V, DAI Xue-zeng, ZHAO Jing-jing, CHEN Bo, HUANG Jin-song. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films [J]. Science Advances, 2019, 5(12): 7537. DOI: https://doi.org/10.1126/sciadv.aax7537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-bo Yuan  (袁永波), Cong-hua Zhou  (周聪华) or Jun-liang Yang  (阳军亮).

Additional information

Foundation item: Projects(51673214, 51673218, 61774170) supported by the National Natural Science Foundation of China; Project(2017YFA0206600) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Jh., Liu, K., Lin, Sy. et al. Solution-processed perovskite solar cells. J. Cent. South Univ. 27, 1104–1133 (2020). https://doi.org/10.1007/s11771-020-4353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4353-7

Key words

关键词

Navigation