Skip to main content
Log in

Study on lithium storage in silicon species of Si-O-C materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium exchange mechanism, local structure, and its possible evolutions on lithium ion extraction and reinsertion are studied in Si-O-C materials. As the silicon distributions and microstructure change with the synthetic method, the relationship between the capacity and silicon structures is evaluated. By comparing derivative capacity curves of the ordinary anode materials composed of Si, C, or O, silicon species in terms of SiOnC4-n (1 ≤ n ≤ 4) are deduced to be the main source of lithium storage in Si-O-C materials. Of all the silicon species, SiOnC4-n (2 ≤ n ≤ 4) are confirmed to be reversible with lithium, but SiOC3 species be irreversible, by tracing the silicon structural changes during lithium insertion/distraction utilizing 29Si MAS NMR. Galvanostatic tests show the reversible capacity increases with the increase of the sum of SiOnC4-n (2 ≤ n ≤ 4) and decreases with the increase of SiOC3 content. Furthermore, a model is established to express the relationship between the capacity and silicon species. According to the model, 1 mol of SiO4, SiO3C, SiO2C2, or SiOC3 species can reversible deliver 3.0, 2.5, 0.5, or 0 mol of lithium ions, respectively. Applied to the reported data, the predictive capacities following the model agree well with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilson AM, Reimers JN, Fuller EW, Dahn JR (1994) Lithium insertion in pyrolyzed siloxane polymers. Solid State Ionics 74:249–254

    Article  CAS  Google Scholar 

  2. Wilson AM, Xing W, Zank G, Yates B, Dahn JR (1997) Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries II: the effect of oxygen. Solid State Ionics 100:259–266

    Article  CAS  Google Scholar 

  3. Wilson AM, Zank G, Eguchi K, Xing W, Dahn JR (1997) Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries. J Power Sources 68:195–200

    Article  CAS  Google Scholar 

  4. Wilson AM, Zank G, Eguchi K, Xing W, Yates B, Dahn JR (1997) Polysiloxane Pyrolysis. Chem Mater 9:1601–1606

    Article  CAS  Google Scholar 

  5. Ning L, Wu Y, Wang L, Fang S, Holze R (2005) Carbon anode materials from polysiloxanes for lithium ion batteries. J Solid State Electrochem 9:520–523

    Article  CAS  Google Scholar 

  6. Fukui H, Ohsuka H, Hino T, Kanamura K (2010) A Si−O−C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. ACS Appl Mater Interfaces 2:998–1008

    Article  CAS  Google Scholar 

  7. Liu X, Zheng M-C, Xie K (2011) Mechanism of lithium storage in Si–O–C composite anodes. J. Power Sources 196:10667–10672

    Article  CAS  Google Scholar 

  8. Xing W, Wilson AM, Eguchi K, Zank G, Dahn JR (1997) Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J Electrochem Soc 144:2410

    Article  CAS  Google Scholar 

  9. Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M (2007) Si–C–O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery. Carbon 45:477–483

    Article  CAS  Google Scholar 

  10. Shen J, Raj R (2011) Silicon-oxycarbide based thin film anodes for lithium ion batteries. J Power Sources 196:5945–5950

    Article  CAS  Google Scholar 

  11. Shen J, Ahn D, Raj R (2011) C-rate performance of silicon oxycarbide anodes for Li+ batteries enhanced by carbon nanotubes. J Power Sources 196:2875–2878

    Article  CAS  Google Scholar 

  12. Liu X, Xie K, Zheng C-M, Wang J, Jing Z (2012) Si–O–C materials prepared with a sol–gel method for negative electrode of lithium battery. J Power Sources 214:119–123

    Article  CAS  Google Scholar 

  13. Liu X, Xie K, Wang J, Zheng C (2012) Si/Si–O–C composite anode materials exhibiting good C rate performances prepared by a sol–gel method. J Mater Chem 22(37):19621

    Article  CAS  Google Scholar 

  14. Boukamp BA, Lesh GC, Huggins RA (1981) All-Solid Lithium Electrodes with Mixed-Conductor Matrix. J Electrochem Soc 128:725

    Article  CAS  Google Scholar 

  15. Sharma RA, Seefurth RN (1976) Thermodynamic Properties of the Lithium-Silicon System. J Electrochem Soc 123:1763

    Article  CAS  Google Scholar 

  16. Marel CVD, Vinke GJB, Lugt WVD (1985) The phase diagram of the system lithium-silicon. Solid State Commun 54:917–919

    Article  Google Scholar 

  17. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558

    Article  CAS  Google Scholar 

  18. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for Lithium Insertion in Carbonaceous Materials. Science 270:590–593

    Article  CAS  Google Scholar 

  19. Sun Q, Zhang B, Fu Z-W (2008) Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci 254:3774–3779

    Article  CAS  Google Scholar 

  20. Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M (2005) Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc 152:A2089

    Article  CAS  Google Scholar 

  21. Saha A, Rajw R, Williamson DL (2006) A model for the nanodomains in polymer-derived silicon oxycarbide. J Am Ceram Soc 89:2188

  22. Gong J, Wu H (2000) Electrochemical intercalation of lithium species into disordered carbon prepared by the heat-treatment of poly (p-phenylene) at 650°C for anode in lithium-ion battery. Electrochim Acta 45:1753–1762

    Article  CAS  Google Scholar 

  23. Kim H, Cho J (2008) Superior Lithium Electroactive Mesoporous Si@Carbon Core−Shell Nanowires for Lithium Battery Anode Material. Nano Lett 8:3688–3691

    Article  CAS  Google Scholar 

  24. Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800

    Article  CAS  Google Scholar 

  25. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. Solid State Ionics 152:125

  26. Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T (2004) Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering. J Electrochem Soc 151:A1572

    Article  CAS  Google Scholar 

  27. Sorarh GD, Andrea GD, Glisenti A (1996) XPS characterization of gel-derived silicon oxycarbide glasses. Mater Lett 27:1–5

    Article  Google Scholar 

  28. Pantano CG, Singh AK, Zhang H, Sol-Gel J (1999) Silicon oxycarbide glasses. Sci Technol 14:7

  29. Yata S, Kinoshita H, Komori M, Ando N, Kashiwamura T, Harada T, Tanaka K, Yamabe T (1994) Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage. Synth Met 62:153–158

    Article  CAS  Google Scholar 

  30. Zheng T, Zhong Q, Dahn JR (1995) High-Capacity Carbons Prepared from Phenolic Resin for Anodes of Lithium-Ion Batteries. J Electrochem Soc 142:L211

    Article  CAS  Google Scholar 

  31. Zheng T, Liu Y, Fuller EW, Tseng S, Sacken UV, Dahn JR (1995) Lithium Insertion in High Capacity Carbonaceous Materials. J Electrochem Soc 142:2581

    Article  CAS  Google Scholar 

  32. Sanchez-Jimenez PE, Raj R (2010) Lithium insertion in polymer-derived silicon oxycarbide ceramics. J Amer Chem Soc 93:1127

  33. Soraru GD, D'Andrea G, Campostrini R, Babonneau F, Mariotto G (1995) Structural characterization and high-temperature behavior of silicon oxycarbide glasses prepared from sol-gel precursors containing Si-H bonds. J Am Ceram Soc 78:379–387

    Article  CAS  Google Scholar 

Download references

Funding

The authors were financially supported by the National Science Foundation of China (51902343), Hunan Provincial Natural Science Foundation of China (2018JJ3595), and the Opening Project of State Key Laboratory of Advanced Chemical Power Sources (No. SKL-ACPS C16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Liu or Yufang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 624 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Liu, X., Xie, K. et al. Study on lithium storage in silicon species of Si-O-C materials. Ionics 26, 3853–3862 (2020). https://doi.org/10.1007/s11581-020-03555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03555-z

Keywords

Navigation