Skip to main content
Log in

Spatiotemporal variability of phytoplankton functional groups in a shallow eutrophic lake from cold, arid regions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the shallow eutrophic lakes in cold, arid regions, the phytoplankton functional groups and the factors that drive their spatiotemporal variabilities remain unclear. Samples were collected from Lake Ulansuhai in April, August, and October 2017 (wet season) and January 2018 (dry season). Based on the functional group classification method, 23 phytoplankton functional groups with 5 major ones were identified. During the wet season, high amounts of nutrients, elevated temperatures, and heavy rainfall produced spatiotemporal variabilities in phytoplankton communities, whereas during the dry season, the frozen period was the critical factor that determined the spatiotemporal variabilities in the phytoplankton communities. Through redundancy analyses, total nitrogen and total phosphorus concentrations were observed to directly affect the phytoplankton growth; algal growth affected the chemical oxygen demand, and pH and environmental factors interacted with the phytoplankton growth. These results highlight the complex feedbacks of shallow eutrophic lake ecosystems in arid regions. Group TC (represented by Lyngbya) was correlated with Huangtai algae. In August, a Huangtai algal bloom resulted in a relatively stable water column, which was conducive to group TC growth. Therefore, the presence of certain phytoplankton functional groups can indicate the current lake conditions by identifying the coverage of Huangtai algae, which provides a scientific basis for an early warning of a potential algal bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An, R., Wang, F., Yu, H., & Ma, C. (2016). Characteristics and physical factors of phytoplankton functional groups in small Xingkai lake. Research of Environmental Sciences, 29(7), 985–994.

    CAS  Google Scholar 

  • Becker, V., Caputo, L., Ordonez, J., Marce, R., Armengol, J., Crossetti, L. O., & Huszar, V. L. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 44(11), 3345–3354.

    CAS  Google Scholar 

  • Bonilla, S., Conde, D., Aubriot, L., & Pérez, M. d. C. (2005). Influence of hydrology on phytoplankton species composition and life strategies in a subtropical coastal lagoon periodically connected with the Atlantic Ocean. Estuaries, 28(6), 884–895.

    Google Scholar 

  • Borics, G., Tóthmérész, B., & Lukács, B. (2012). Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia, 698(1), 251–262.

    Google Scholar 

  • Brook, A. J. (1959). The status of desmids in the plankton and the determination of phytoplankton quotients. Journal of Ecology, 47(2), 429–445.

    Google Scholar 

  • Cao, Y. C. (2012). Path analysis on competition of nitrogen and phosphorus among Nannochloropsis oculata, Cryptomonas erosa, and Oscillatoria chlorine. Progress in Fishery Sciences, 33(4), 100–106.

    CAS  Google Scholar 

  • Cao, J., Hou, Z., Li, Z., Chu, Z., Yang, P., & Zheng, B. (2018). Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Science of the Total Environment, 631-632, 1127–1137.

    CAS  Google Scholar 

  • Chen, L. L., Zou, H., Yan, Z., & Zhang, H. J. (2014). Phytoplankton community characteristics and ecological assessment of water quality in Xiaoxi Port. Research of Environmental Sciences, 27(9), 1016–1023.

    CAS  Google Scholar 

  • Chen, Q., Yu, R., Hao, Y., Wu, L., Zhang, W., Zhang, Q., & Bu, X. (2018). A new method for mapping aquatic vegetation especially underwater vegetation in Lake Ulansuhai using GF-1 satellite data. Remote Sensing, 10(8), 1279.

    Google Scholar 

  • Crossetti, L., & Bicudo, C. (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Gar.as Pond): the assemblage index application. Hydrobiologia, 610(1), 161–173.

    CAS  Google Scholar 

  • da Costa, M. R. A., Attayde, J. L., & Becker, V. (2015). Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia, 778(1), 75–89.

    Google Scholar 

  • Dai, G., Li, J., Li, L., & Song, L. (2012). The spatio-temporal pattern of phytoplankton in the north basin of Lake Dianchi and related environmental factors. Acta Hydrobiologica Sinica, 36(5), 947–956.

    Google Scholar 

  • de Souza, D. G., Bueno, N. C., Bortolini, J. C., Rodrigues, L. C., Bovo-Scomparin, V. M., & de Souza Franco, G. M. (2016). Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia, 779(1), 47–57.

    Google Scholar 

  • Doblin, M., Thompson, P., Revill, A., Butler, E., Blackburn, S., & Hallegraeff, G. (2006). Vertical migration of the toxic dinoflagellate Gymnodinium catenatum under different concentrations of nutrients and humic substances in culture. Harmful Algae, 5(6), 665–677.

    CAS  Google Scholar 

  • Dong, J., Li, G. B., & Song, L. R. (2014). Historical changes of phytoplankton functional groups in Lake Fuxian,Lake Erhai and Lake Dianchi since 1960s. Journal of Lake Sciences, 26(5), 735–742.

    Google Scholar 

  • Fadel, A., Atoui, A., Lemaire, B. J., Vincon-Leite, B., & Slim, K. (2015). Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level. Environmental Monitoring and Assessment, 187(10), 633.

    Google Scholar 

  • Fan, C., Liu, Y., Guo, Y., Mao, W., Zheng, N., & Sakina Yasinjan. (2011). Effects of Spirogyra on the cyanobacteria recruitment and phytoplankton community structure. Acta Scientiae Circumstantiae, 31(10), 2133–2137.

    Google Scholar 

  • Hall, R. I., & Smol, J. P. (2010). Diatoms as indicators of lake eutrophication. In E. F. Stoermer & J. P. Smol (Eds.), The diatoms: applications for the environmental and earth sciences (2nd ed., pp. 122–151). Cambridge: Cambridge University Press.

    Google Scholar 

  • He, S., Yu, F., & Liu, Y. (2009). Evaluation on black-odorous water related with Euglenophyta abundance and biomass in the Gu River of Guangzhou City. Acta Scientiae Circumstantiae, 39(3), 696–705.

    Google Scholar 

  • Heino, J. (2010). Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators, 10(2), 112–117.

    Google Scholar 

  • Hu, H., Wei, Y. (2006). Freshwater algae in China--system, classification and ecology. Science Press.

  • Hu, S., Gao, Y., & Zhang, S. (2009). Distribution of nutrients and ecological indexes of diatom about Moon Lake in Wuhan. Ecology and Environmental Sciences, 18(3), 856–864.

    Google Scholar 

  • Jeppesen, E., Jensen, J. P., Søndergaard, M., Lauridsen, T., & Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology, 45(2), 201–218.

    CAS  Google Scholar 

  • Lampitt, R. S., Wishner, K. F., Turley, C. M., & Angel, M. V. (1993). Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology, 116(4), 689–702.

    Google Scholar 

  • Lei, G. Y. (2009). The characteristics and mechanisms of nitrogen and phosphorus removal and inhabition of microalgal species by filamentous green algae. Harbin: Doctor, Harbin Institute of Technology.

    Google Scholar 

  • Lei, H. J., Wang, G., Wen, S. Q., Zhang, L. Y., & Pan, H. W. (2012). Assessment on the evolution characteristics and eutrophication of water quality in Wuliangsuhai Lake. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 33(2), 131–133.

    Google Scholar 

  • Li, X., He, T. T., & Gou, M. M. (2018a). CCA analysis of phytoplankton community characteristics and environmental factors in Wuliangsuhai Lake during ice - season. Journal of Northeast Agricultural University, 49(4), 67–78.

    Google Scholar 

  • Li, L., Li, Q., Chen, J. A., Wang, J., Jiao, S., & Chen, F. (2018b). Temporal and spatial distribution of phytoplankton functional groups and role of environment factors in a deep subtropical reservoir. Journal of Oceanology and Limnology, 36(3), 761–771.

    Google Scholar 

  • Liu, C. G., Qiu, J. Q., Wang, W., & Zhuang, Y. Y. (2004). Advances on theory of biomanipulation in control of eutrophicated lakes. Journal of Agro-Environmental Science, 23(1), 198–201.

    Google Scholar 

  • Liu, H., Zou, J. Y., Rong, G. W., Wang, Y. W., Yan, C. Q., & Hao, Y. Y. (2015). Removal efficiency of COD in wastewater by natural algae. Journal of Engineering of Heilongjiang University, 6(2), 39–41.

    CAS  Google Scholar 

  • Lu, X., Tian, C., & Pei, H. (2013). Environmental factors influencing cyanobacteria community structure in Dongping Lake, China. Journal of Environmental Sciences, 25(11), 2196–2206.

    CAS  Google Scholar 

  • Ma, J., & Lei, G. (2008). Characteristics of phosphorus removal and growth inhabition of micro-algal species by Spirogyra. Acta Scientiae Circumstantiae, 28(3), 476–483.

    CAS  Google Scholar 

  • Makarewicz, J. C. (1993). Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. Journal of Great Lakes Research, 19(2), 258–274.

    Google Scholar 

  • Mao, X., Wei, X., Yuan, D., Jin, Y., & Jin, X. (2018). An ecological-network-analysis based perspective on the biological control of algal blooms in Lake Ulansuhai, China. Ecological Modelling, 386, 11–19.

    Google Scholar 

  • Mosisch, T. D., Bunn, S. E., Davies, P. M., & Marshall, C. J. (1999). Effects of shade and nutrient manipulation on periphyton growth in a subtropical stream. Aquatic Botany, 64(2), 167–177.

    Google Scholar 

  • Nalewajko, C., & Murphy, T. P. (2001). Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology, 2(1), 45–48.

    Google Scholar 

  • O'Neil, J., & Davis, T. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    CAS  Google Scholar 

  • Padisák, J., Borics, G., Grigorszky, I., & Soróczki-Pintér, É. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia, 553(1), 1–14.

    Google Scholar 

  • Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1–19.

    Google Scholar 

  • Peng, K., Taimin, L. I., Liu, L., Zou, W., Tianhao, W. U., & Gong, Z. (2018). Community structure of phytoplankton and bio-assessment of water quality in Lake Luoma, northern Jiangsu Province. Journal of Lake Sciences, 30(1), 183–191.

    Google Scholar 

  • Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge University Press.

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428.

    Google Scholar 

  • Sager, P. E., & Hasler, A. D. (1969). Species diversity in lacustrine phytoplankton. I. The Components of the Index of Diversity from Shannon’s Formula. American Naturalist, 103(929), 51–59.

    Google Scholar 

  • Sakshaug, E. (1981). Phytoplankton manual- monographs on oceanographic methodology, 6 : A. Sournia (Editor) UNESCO, Paris, 1978, 337 pp. Ocean Management, 6(2), 247–248.

    Google Scholar 

  • Salonen, K., & Rosenberg, M. (2000). Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. Journal of Plankton Research, 22(10), 1841–1853.

    Google Scholar 

  • Sarma, S., & Nandini, S. (2005). Life history strategies of cladocerans: comparisons of tropical and temperature taxa. Hydrobiologia, 542, 315–334.

    Google Scholar 

  • Shen, H., Xu, Y., Wang, L., Zhang, M., Kong, L., & Cai, Q. (2010). Spatial and temporal variations of phytoplankton in Danjiangkou reservoir and its affecting factors. Plant Sci. J., 29(6), 683–690.

    Google Scholar 

  • Shu, H. L., Zheng, L. L., Weng, X. Y., & Zhuang, H. R. (2016). Allelopathic effects between Pseudanabaena mucicola and Microcystis aeruginosa. Journal of Fujian Normal University, 32(2), 63–68.

    Google Scholar 

  • Soylu, E., & Gnülol, A. (2010). Functional classification and composition of phytoplankton in Liman Lake. Turkish Journal of Fisheries and Aquatic Sciences, 10(1), 53–60.

    Google Scholar 

  • Sun, J., Liu, D., & Qian, S. (2000). Estimating biomass of phytoplankton in the Jiaozhou Bay I. phytoplankton biomass estimated from cell volume and plasma volume. Acta Oceanologica Sinica, 19(2), 97–110.

    Google Scholar 

  • Takamura, N. (1992). Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura. Japan. Arch. Hydrobiol, 124, 129–148.

    Google Scholar 

  • Tian, Y., Yu, C., Wang, L., & Huang, B. (2012). Dynamic changes of phytoplankton's community structure in Beixi of Jiulongjiang River, Fujian Province of East China and related affecting factors. Chinese Journal of Applied Ecology, 23(9), 2559–2565.

    CAS  Google Scholar 

  • Tian, C., Lu, X., & Pei, H. (2013). Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China. Environmental Monitoring and Assessment, 185(3), 2627–2645.

    Google Scholar 

  • Tian, C., Pei, H. Y., Hu, W. R., Hao, D. P., Doblin, M. A., Ren, Y., Wei, J. L., & Feng, Y. W. (2015). Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China. Environmental Science and Pollution Research International, 22(22), 18163–18175.

    CAS  Google Scholar 

  • Wang, C., B-Béres, V., Stenger-Kovács, C., Li, X., & Abonyi, A. (2018). Enhanced ecological indication based on combined planktic and benthic functional approaches in large river phytoplankton ecology. Hydrobiologia, 818(1), 163–175.

    CAS  Google Scholar 

  • Wei, B., Sugiura, N., & Maekawa, T. (2001). Use of artificial neural network in the prediction of algal blooms. Water Research, 35(8), 2022–2028.

    CAS  Google Scholar 

  • Wei, F.S., Qi, W.Q., Bi, T.(2002). Editorial board of “Monitor and Analytical Method of Water & Waste Water”. Monitor and Analytical Method of Water & Waste Water (4th Edition) [M]. Beijing: Environmental Science Press of China, 243-257.

  • Xiao, L. J., Wang, T., Hu, R., Han, B. P., Wang, S., Qian, X., & Padisak, J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research, 45(16), 5099–5109.

    CAS  Google Scholar 

  • Xu, Y., Cai, Q., Wang, L., Kong, L., & Li, D. (2010). Diel vertical migration of Peridiniopsis niei, Liu et al., a new species of dinoflagellates in a eutrophic bay of Three-Gorge Reservoir, China. Aquatic Ecology, 44(2), 387–395.

    CAS  Google Scholar 

  • Yan, X. W. (2007). Effects of tilapia, mud carp and macrophytes on phytoplankton communities. Guangzhou: Jinan University.

    Google Scholar 

  • Yang, Z., Li, C., Zhang, S., & Sun, B. (2009). Temporal and spatial distribution of chlorophyll-a concentration and the relationships with TN, TP concentrations in Lake Ulansuhai, Inner Mongolia. J. Lake Sci, 37(3), 403–408.

    Google Scholar 

  • Yang, J. R., Lv, H., Isabwe, A., Liu, L., Yu, X., Chen, H., & Yang, J. (2017). Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 120, 52–63.

    CAS  Google Scholar 

  • Yin, Z. L. (2017). Characteristics of phytoplankton functional groups in Dalihu Natural Reserve. Harbin: Master, Northeast Forestry University.

    Google Scholar 

  • Zhang, W., Fu, S., & Liu, B. (2001). Error assessment of visual estimation plant coverage. Journal of Beijing Normal University (Natural Science), 37(1), 403–408.

    Google Scholar 

  • Zhang, L., Xia, Z., Zhou, W., Bhamilton, P., & Haffner, D. (2015). Spatial distribution of nutrients and phytoplankton and causes for their differences in Three Gorges Reservoir in spring. Research of Environmental Sciences, 28(7), 1069–1077.

    CAS  Google Scholar 

  • Zhao, K., Fu, H. Y., Chai, T., Zhang, M. Z., Liu, Z. F., Chen, X. J., Hou, M., & Xu, P. C. (2011). Allelopathy of Hydrodictyon reticulatum on Microcystis aeruginosa and its removal capacity on nitrogen and phosphorus. Environmental Science, 32(8), 2268–2272.

    Google Scholar 

  • Zheng, W., Han, X., Liu, C., & Yunpeng, L. I. (2010). Satellite remote sensing data monitoring “Huang Tai” algae bloom in Lake Ulansuhai, Inner Mongolia. Journal of Lake Sciences, 22(3), 321–326.

    Google Scholar 

  • Zhou, J., Wang, X., & Pei, G. (2008). Effects of filamentous green algae culture water on growth of Microcystis aeruginosa and Scenedesmus obliquus. Journal of South-Central University for Nationalities (Nat. Sci. Edition), 27(3), 33–35.10.

    CAS  Google Scholar 

  • Zhu, G., Qin, B., Gao, G., Zhang, L., Luo, L., & Zhang, Y. (2007). Effects of hydrodynamics on phosphorus concentrations in water of Lake Taihu, a large, shallow, eutrophic lake of China. Hydrobiologia, 194, 53–61.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Xixi Lu of the National University of Singapore for reading the manuscript and providing comments. We also thank all the colleagues and students at the Inner Mongolia Key Laboratory of River and Lake Ecology for their assistance with sampling.

Funding

This study was funded by the Science and Technology Major Project on Lakes of Inner Mongolia (Grant No. ZDZX2018054), the National Natural Science Foundation of China (Grant Nos. 51869014, 51469018, 41701281), the Key Scientific and Technological Project of Inner Mongolia (Grant No. 2019GG019), and the National Key Research and Development Program of China (Grant No. 2016YFC0500508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihong Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Yu, R., Zhang, Z. et al. Spatiotemporal variability of phytoplankton functional groups in a shallow eutrophic lake from cold, arid regions. Environ Monit Assess 192, 371 (2020). https://doi.org/10.1007/s10661-020-08349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08349-4

Keywords

Navigation