Skip to main content
Log in

Antistatic Structural Color and Photoluminescent Membranes from Co-assembling Cellulose Nanocrystals and Carbon Nanomaterials for Anti-counterfeiting

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Static charges on optical anti-counterfeiting membranes may lead to materials structural changes, dust stain aggravation, and misreading of optical information. Incorporating conductive particles is a common way to transfer accumulative charges, but the key issue is how to achieve high dispersion and effective distribution of particles. According to the strategy of assembly-induced structural colors, cellulose nanocrystals (CNCs) were employed as a solid emulsifier to stabilize hydrophobic carbon nanoparticles (CNPs) in aqueous media; subsequently, by solvent-evaporation-modulated co-assembly under a condition of 30 °C and 20 RH%, the binary suspensions containing 2 wt% CNC and CNPs with the equivalent concentration relative to CNC ranged from 1:40 to 1:10 were used to prepare antistatic composite membranes. Surface chemistry regulation of CNCs was applied to optimize the dispersibility of CNPs and the orientation of assembled CNC arrays, and the hydrophilic CNCs were more favorable for dispersion and assembly of binary suspension systems. Meanwhile, one-dimension carbon nanotube (CNT) and zero-dimension carbon black (CB) were found to show better dispersibility than two-dimension graphene, which was verified by a semiquantitative theoretical study. Moreover, the stable binary systems of CNT/CNC and CB/CNC were chosen for co-assembly as membranes, and the uniaxial orientation could be optimized as the full-width of 9.8° at half-maximum deviation angle while the surface resistivity could also drop down to 3.42 × 102 Ω·cm·cm−1. The structural color character of such paper-homology and antistatic-integrated membranes contributes to optical information hiding-and-reading, and shows great potential as optical mark recognition materials for electrostatic discharge protective packaging and anti-counterfeiting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 2016, 8, 13288–13296.

    CAS  PubMed  Google Scholar 

  2. Chu, L.; Zhang, X.; Niu, W.; Wu, S.; Ma, W.; Tang, B.; Zhang, S. Hollow silica opals/cellulose acetate nanocomposite films with structural colors for anti-counterfeiting of banknotes. J. Mater. Chem. C 2019, 7, 7411–7417.

    CAS  Google Scholar 

  3. Zhang, J.; Zhao, L.; Liu, Y.; Li, M.; Li, G.; Meng, X. Two luminescent transition-metal-organic frameworks with a predesigned ligand as highly sensitive and selective iron(III) sensors. New J. Chem. 2018, 42, 6839–6847.

    CAS  Google Scholar 

  4. Yao, K.; Meng, Q.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 2017, 29, 1701323.

    Google Scholar 

  5. Khan, M. K.; Bsoul, A.; Walus, K.; Hamad, W. Y.; MacLachlan, M. J. Photonic patterns printed in chiral nematic mesoporous resins. Angew. Chem. Int. Ed. 2015, 54, 4304–4308.

    CAS  Google Scholar 

  6. Gan, L.; Feng, N.; Liu, S.; Zheng, S.; Li, Z.; Huang, J. Assembly-induced emission of cellulose nanocrystals for hiding information. Part. Part. Syst. Char. 2019, 36, 1800412.

    Google Scholar 

  7. Qu, D.; Zheng, H.; Jiang, H.; Xu, Y.; Tang, Z. Chiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized light. Adv. Opt. Mater. 2019, 7, 1801395.

    Google Scholar 

  8. Nandi, S.; Guha, P. A review on preparation and properties of cellulose nanocrystal-incorporated natural biopolymer. J. Package. Technol. Res. 2018, 2, 149–166.

    Google Scholar 

  9. Giese, M.; Blusch, L. K.; Khan, M. K.; MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 2015, 54, 2888–2910.

    CAS  Google Scholar 

  10. Liu, Y.; Schutz, C.; Salazar-Alvarez, G.; Bergström, L. Assembly, gelation, and helicoidal consolidation of nanocellulose dispersions. Langmuir 2019, 35, 3600–3606.

    CAS  PubMed  Google Scholar 

  11. Liu, D.; Wang, S.; Ma, Z.; Tian, D.; Gu, M.; Lin, F. Structure-color mechanism of iridescent cellulose nanocrystal films. RSC Adv. 2014, 4, 39322–39331.

    CAS  Google Scholar 

  12. Khandelwal, M.; Windle, A. H. Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer 2013, 54, 5199–5206.

    CAS  Google Scholar 

  13. Lizundia, E.; Nguyen, T. D.; Vilas, J. L.; Hamad, W. Y.; MacLachlan, M. J. Chiroptical luminescent nanostructured cellulose films. Mater. Chem. Front. 2017, 1, 979–987.

    CAS  Google Scholar 

  14. Razalli, R. L.; Abdi, M. M.; Tahir, P. M.; Moradbak, A.; Sulaiman, Y.; Heng, L. Y. Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv. 2017, 7, 25191–25198.

    CAS  Google Scholar 

  15. Wu, C. S.; Liao, H. T. Characterization and antistatic behavior of SiO2-functionalized multiwalled carbon nanotube/poly(trimethylene terephthalate) composites. J. Polym. Res. 2013, 20, 253.

    Google Scholar 

  16. Qu, D.; Zhang, F.; Gao, H.; Wang, Q.; Bai, Y.; Liu, H. Studies on isosorbide-enhanced biodegradable poly(ethylene succinate). Chem. Res. Chinese U. 2019, 35, 345–352.

    CAS  Google Scholar 

  17. Querejeta-Fernandez, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 0014, 136, 4788–4793.

    Google Scholar 

  18. Sun, S. J.; Wei, Fan, J.; Lin, C. Y. The electrical conduction variation in stained carbon nanotubes. Physica E 2012, 44, 803–807.

    CAS  Google Scholar 

  19. Pei, S.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

    CAS  Google Scholar 

  20. Wu, X.; Lu, C.; Zhang, X.; Zhou, Z. Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements. J. Mater. Chem. A 2015, 3, 13317–13323.

    CAS  Google Scholar 

  21. Wu, X.; Han, Y.; Zhang, X.; Zhou, Z.; Lu, C. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.

    CAS  Google Scholar 

  22. Wu, X.; Lu, C.; Han, Y.; Zhou, Z.; Yuan, G.; Zhang, X. Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 2016, 124, 44–51.

    CAS  Google Scholar 

  23. Montes, S.; Carrasco, P. M.; Ruiz, V.; Cabañero, G.; Grande, H. J.; Labidi, J.; Odriozola, I. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos. Sci. Technol. 2015, 117, 26–31.

    CAS  Google Scholar 

  24. Zhu, L.; Zhou, X.; Liu, Y.; Fu, Q. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl. Mater. Interfaces 2019, 11, 12968–12977.

    CAS  PubMed  Google Scholar 

  25. Zhao, W.; Li, X.; Gao, S.; Feng, Y.; Huang, J. Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 2017, 24, 2095–2110.

    CAS  Google Scholar 

  26. Yu, H. Y.; Qin, Z. Y.; Liu, L.; Yang, X. G.; Zhou, Y.; Yao, J. M. Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos. Sci. Technol. 2013, 87, 22–28.

    CAS  Google Scholar 

  27. Gan, L.; Liao, J.; Lin, N.; Hu, C.; Wang, H.; Huang, J. Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites. ACS Omega 2017, 2, 4725–4736.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13, 679–687.

    CAS  Google Scholar 

  29. Gomez-Bujedo, S.; Fleury, E.; Vignon, M. R. Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate. Biomacromolecules 2008, 5, 565–571.

    Google Scholar 

  30. Fraschini, C.; Chauve, G.; Bouchard, J. TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 2017, 24, 2775–2790.

    CAS  Google Scholar 

  31. Lin, N.; Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 2014, 6, 5384–5693.

    CAS  PubMed  Google Scholar 

  32. Zhou, L.; Zhu, D.; Zhang, S.; Pan, B. A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. J. Environ. Sci. 2015, 29, 1–10.

    Google Scholar 

  33. Glotzer, S. C.; Horsch, M. A.; Iacovella, C. R.; Zhang, Z.; Chan, E. R.; Zhang, X. Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid In. 2005, 10, 287–295.

    CAS  Google Scholar 

  34. McClements, J.; Shaver, M. P.; Sefiane, K.; Koutsos, V. Morphology of poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a graphite surface. Langmuir 2018, 34, 7784–7796.

    CAS  PubMed  Google Scholar 

  35. Lin, N.; Huang, J.; Chang, P. R.; Feng, J.; Yu, J. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohyd. Polym. 2011, 83, 1834–1842.

    CAS  Google Scholar 

  36. Lin, N.; Bruzzese, C.; Dufresne, A. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl. Mater. Interfaces 2012, 4, 4948–4959.

    CAS  PubMed  Google Scholar 

  37. Molnes, S. N.; Paso, K. G.; Strand, S.; Syverud, K. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 2017, 24, 4479–4491.

    CAS  Google Scholar 

  38. Liu, S.; Chen, Y.; Liu, C.; Gan, L.; Ma, X.; Huang, J. Polydopamine-coated cellulose nanocrystals as an active ingredient in poly(vinyl alcohol) films towards intensifying packaging application potential. Cellulose 2019, 26, 9599–9612.

    CAS  Google Scholar 

  39. Kiprono, S. J.; Ullah, M. W.; Yang, G. Encapsulation of E. coli in biomimetic and Fe3O4-doped hydrogel: structural and viability analyses. Appl. Microbiol. Biot. 2018, 102, 933–944.

    CAS  Google Scholar 

  40. Figarol, A.; Pourchez, J.; Boudard, D.; Forest, V.; Akono, C.; Tulliani, J. M.; Lecompte, J. P.; Cottier, M.; Bernache-Assollant, D.; Grosseau, P. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. Toxicol. in Vitro 2015, 30, 476–485.

    CAS  PubMed  Google Scholar 

  41. Kumar, S. M. S.; Herrero, J. S.; Irusta, S.; Scott, K. The effect of pretreatment of Vulcan XC-72R carbon on morphology and electrochemical oxygen reduction kinetics of supported Pd nano-particle in acidic electrolyte. J. Electroanal. Chem. 2010, 647, 211–221.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973175 and 51603171), the Project for Chongqing University Innovation Research Group (No. CXQT19008), the Chongqing Talent Plan for Innovation and Entrepreneurship Demonstration Team (No. CQYC201903243), and the Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education (No. PCFM201605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Gan or Jin Huang.

Electronic Supplementary Information

10118_2020_2414_MOESM1_ESM.pdf

Antistatic Structural Color and Photoluminescent Membranes from Co-Assembling Cellulose Nanocrystals and Carbon Nanoparticles for Anti-counterfeiting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SY., Gong, YB., Ma, S. et al. Antistatic Structural Color and Photoluminescent Membranes from Co-assembling Cellulose Nanocrystals and Carbon Nanomaterials for Anti-counterfeiting. Chin J Polym Sci 38, 1061–1071 (2020). https://doi.org/10.1007/s10118-020-2414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2414-x

Keywords

Navigation