Skip to main content
Log in

Controlling the rf phase error induced micromotion in Paul trap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Excess micromotion of trapped ions leads to several adverse effects, such as modulating the absorption spectrum, shifting the transition frequency, and causing extra motional heating of ions. Moreover, it is hard to deal with, if there is no rf null point in a Paul trap. In this paper, two methods are proposed to control these adverse effects introduced by excess micromotion. The first method can eliminate the spectral modulation effect while keeping the micromotion unaffected by phase modulating the related laser. The second one can control the amplitude of micromotion or compensate it completely to remove the frequency shift effects by applying ac voltage to the dc electrodes. With these two methods, we are not only able to control the micromotion amplitude in a Paul trap without rf null point, but also to realize effective sideband cooling and quantum state manipulating when ions still undergo large excess micromotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015)

    Article  ADS  Google Scholar 

  2. Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, K. Gao, Phys. Rev. Lett. 116, 013001 (2016)

    Article  ADS  Google Scholar 

  3. C. Shen, L.M. Duan, Phys. Rev. A 90, 022332 (2014)

    Article  ADS  Google Scholar 

  4. S.T. Wang, C. Shen, L.M. Duan, Sci. Rep. 5, 8555 (2015)

    Article  Google Scholar 

  5. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 117, 060505 (2016)

    Article  ADS  Google Scholar 

  6. A. Bermudez, P. Schindler, T. Monz, R. Blatt, M. Müller, New J. Phys. 19, 113038 (2017)

    Article  ADS  Google Scholar 

  7. G.P. Barwood, H.S. Margolis, G. Huang, P. Gill, H.A. Klein, Phys. Rev. Lett. 93, 133001 (2004)

    Article  ADS  Google Scholar 

  8. N.C. Lewty, B.L. Chuah, R. Cazan, B.K. Sahoo, M.D. Barrett, Phys. Rev. A 88, 012518 (2013)

    Article  ADS  Google Scholar 

  9. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998)

    Article  ADS  Google Scholar 

  10. T. Pruttivarasin, M. Ramm, H. Häffner, J. Phys. B Atom. Mol. Opt. Phys. 47, 135002 (2014)

    Article  ADS  Google Scholar 

  11. J.I. Cirac, L.J. Garay, R. Blatt, A.S. Parkins, P. Zoller, Phys. Rev. A 49, 421 (1994)

    Article  ADS  Google Scholar 

  12. R.G. DeVoe, J. Hoffnagle, R.G. Brewer, Phys. Rev. A 39, 4362 (1989)

    Article  ADS  Google Scholar 

  13. S. Brouard, J. Plata, Phys. Rev. A 63, 043402 (2001)

    Article  ADS  Google Scholar 

  14. L.V. Ryjkov, X.Z. Zhao, H.A. Schuessler, Phys. Rev. A 71, 033414 (2005)

    Article  ADS  Google Scholar 

  15. C.B. Zhang, D. Offenberg, B. Roth, M.A. Wilson, S. Schiller, Phys. Rev. A 76, 012719 (2007)

    Article  ADS  Google Scholar 

  16. Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  17. D. Leibfried, Phys. Rev. A 60, R3335 (1999)

    Article  ADS  Google Scholar 

  18. N. Navon, S. Kotler, N. Akerman, Y. Glickman, I. Almog, R. Ozeri, Phys. Rev. Lett. 111, 073001 (2013)

    Article  ADS  Google Scholar 

  19. T.F. Gloger, P. Kaufmann, D. Kaufmann, M.T. Baig, T. Collath, M. Johanning, C. Wunderlich, Phys. Rev. A 92, 043421 (2015)

    Article  ADS  Google Scholar 

  20. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  21. T. Sikorsky, Z. Meir, N. Akerman, R. Ben-shlomi, R. Ozeri, Phys. Rev. A 96, 012519 (2017)

    Article  ADS  Google Scholar 

  22. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 57, 1699 (1986)

    Article  ADS  Google Scholar 

  23. C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  24. H. Kaufmann, S. Ulm, G. Jacob, U. Poschinger, H. Landa, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, Phys. Rev. Lett. 109, 263003 (2012)

    Article  ADS  Google Scholar 

  25. B. Yoshimura, M. Stork, D. Dadic, W.C. Campbell, J.K. Freericks, EPJ Quant. Technol. 1, 2 (2014)

    Article  Google Scholar 

  26. M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87, 1419 (2015)

    Article  ADS  Google Scholar 

  27. A.N. Kotana, A.K. Mohanty, Int. J. Mass Spectrom. 414, 13 (2017)

    Article  Google Scholar 

  28. R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program under Grant no. 2016FA0301903, the Natural Science Foundation of China under Grant no. 11904402, and the Research Plan Project of National University of Defense Technology under Grants nos. ZK18-01-01 and ZK18-03-03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xie or Pingxing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wu, W., Xie, Y. et al. Controlling the rf phase error induced micromotion in Paul trap. Appl. Phys. B 126, 102 (2020). https://doi.org/10.1007/s00340-020-07447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07447-y

Navigation