Skip to main content
Log in

Micromechanical Modelling of Dynamic Behavior of Advanced Sheet Molding Compound (A-SMC) Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Passive safety, particularly in the transport industry, requires maximizing the dissipation of energy and minimizing the decelerations undergone by a vehicle following a violent impact (crash). This paper proposes a strategy for identifying an anisotropic local damage criterion in a moderate dynamic loading for Advanced Sheet Molding Compound (A-SMC) composite materials. Multi-scale damage modelling based on the Mori-Tanaka approach is put forward. Previously, the results of an experimental campaign carried out on a range of strain rates varying from quasi static to 200 s−1 were used to identify a probabilistic local damage criterion based on Weibull’s formulation and integrate the effect of damage at a fiber-matrix interface scale. Therefore, the progressive local damage occurring under a fast loading may be described. A two-step homogenization procedure allows describing the strain rate effect on the stress-strain curves. The model gives also rise to the prediction of the progressive anisotropic loss of stiffness. Comparing between the experimental and numerical results confirms the ability of the proposed approach to describe the visco-damage effect (delay of damage threshold and decrease in damage kinetics) emphasized in A-SMC composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feuillade, V., Bergeret, A., Quantin, J., Crespy, A.: Characterisation of glass fibres used in automotive industry for SMC body panels. Compos. Part A Appl. Sci. Manuf. 37(10), 1536–1544 (2006)

    Article  Google Scholar 

  2. Chaturvedi, S.K., Sun, C.T., Sierakowski, R.L.: Mechanical characterization of sheet molding compound composites. Polym. Compos. 4(3), 167–171 (1983)

    Article  CAS  Google Scholar 

  3. Naebe, M., Abolhasani, M.M., Khayyam, H., Amini, A., Fox, B.: Crack damage in polymers and composites: a review. Polym. Rev. 56(1), 31–69 (2016)

    Article  CAS  Google Scholar 

  4. Shirinbayan, M.; Etude du comportement mécanique et de l’endommagement de divers matériaux composites SMC soumis à des chargements de type dynamique, fatigue et dynamique post-fatigue. Thèse de doctorat d’Arts et Métiers ParisTech (2017)

  5. Okoli, O.: The effects of strain rate and failure modes on the failure energy of fibre reinforced composites. Compos. Struct. 54, 299–303 (2001)

    Article  Google Scholar 

  6. Dear, J.P., Brown, S.A.: Impact damage in reinforced polymeric materials. Compos. Part A: Appl. Sci. Manufact. 34, 411–420 (2003)

    Article  Google Scholar 

  7. Jendli, Z., Meraghni, F., Fitoussi, J., Baptiste, D.: Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites. Compos. Part A Appl. Sci. Manuf. 35(7–8), 779–785 (2004)

    Article  Google Scholar 

  8. Lee, H.K., Simunovic, S.: A damage mechanics model of crack-weakened, chopped fiber composites under impact loading. Compos. Part B: Eng. 33, 25–34 (2002)

    Article  Google Scholar 

  9. Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos. Sci. Technol. 65, 2174–2188 (2005)

    Article  CAS  Google Scholar 

  10. Fitoussi, J.: Etude micromécanique de l’influence de l’endommagement à l’interface fibre/matrice sur le comportement des composites organiques à renforts discontinus. Thesis in ENSAM, Paris (1995)

    Google Scholar 

  11. Capela, C., Costa, J.D., Ferreira, J.A.M.: Test conditions effect on the fracture toughness of hollow glass micro-sphere filled composites. Strain. 44(2), 141–146 (2008)

    Article  Google Scholar 

  12. Jendli, Z., Fitoussi, J., Meraghni, F., Baptiste, D.: Anisotropic strain rate effects on the fibre-matrix interface decohesion in sheet moulding compound composites. Compos. Sci. Technol. 65(3–4), 387–393 (2005)

    Article  CAS  Google Scholar 

  13. Tamboura, S., Sidhom, H., Baptiste, H., Fitoussi, J.: Fatigue resistance evaluation of SMC R42 composite. Mater. Tech. 89, 3–4 (2001)

    Article  CAS  Google Scholar 

  14. Laribi M. A., Tamboura S, Fitoussi J, Tcharkhtchi A, H. Ben Dali, Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: application to SMC Compos. Part B: Eng., Volume 139, 15 April 2018, Pages 155–162

  15. Shirinbayan M., Fitoussi J., Meraghni F., Farzaneh S., Surowiec B., Tcharkhtchi A.: Effect of a post-fatigue damage on the residual dynamic behavior of advanced-SMC composites. Appl. Compos. Mater., 1–19 (2019)

  16. Shirinbayan, M., Fitoussi, J., Meraghni, F., Laribi, M., Surowiec, B., Tcharkhtchi, A.: Coupled effect of loading frequency and amplitude on the fatigue behavior of advanced sheet molding compound (A-SMC). J. Reinf. Plast. Compos. 36(4), 271–282 (2017)

    Article  CAS  Google Scholar 

  17. Shirinbayan, M., Fitoussi, J., Bocquet, M., Meraghni, F., Surowiec, B., Tcharkhtchi, A.: Multi-scale experimental investigation of the viscous nature of damage in advanced sheet molding compound (A-SMC) submitted to high strain rates. Compos. Part B. 115, 3–17 (2017)

    Article  Google Scholar 

  18. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of advanced sheet molding compound (A-SMC) under tension. Compos. Part B. 82, 30–41 (2015)

    Article  CAS  Google Scholar 

  19. Jendli, Z., Meraghni, F., Fitoussi, J., Baptiste, D.: Multi-scales modelling of dynamic behavior for discontinuous fiber SMC composites. Compos. Sci. Technol. 69, 97–103 (2009)

    Article  CAS  Google Scholar 

  20. Jendli, Z.: Analyse et modelisation multi echelles du comportement mecanique sous sollicitations rapides de composites SMC. Thesis in ENSAM, Paris (2005)

    Google Scholar 

  21. Shirinbayan M, Fitoussi J, Abbasnezhad N, Meraghni F, Surowiec B, Tcharkhtchi A.: Overall mechanical characterization of a low density sheet molding compound (LD-SMC): multi-scale damage analysis and strain rate effect. Compos. Part B: Eng. (2017)

  22. Shirinbayan M.: Etude du comportement mécanique et de l’endommagement de divers matériaux composites SMC soumis à des chargements de type dynamique, fatigue et dynamique post-fatigue. Thesis in Ecole nationale supérieure d’arts et métiers- ENSAM, 2017

  23. Chaboche, J.L., Gallerneau, F.: An overview of the damage approach of durability modelling at elevated temperature. Fatigue Fract. Eng. 24, 405–418 (2001)

    Article  Google Scholar 

  24. Al-Maghribi Abir: Comportement des materiaux composites a fibres courtes: applications a l’impact basse vitesse. Thesis in I.S.A.E Institut Supérieure de l’Aéronautique et de l’Espace, université de Toulouse, 2008

  25. Bonnet B.: Comportement au choc de matériaux composites pour applications automobiles. Thesis in Ecole des Mines-Paris

  26. Barré, S., Chotard, T., Benzeggah, M.L.: Comparative study of strain rate effects on mechanical properties of glass fibrere inforced thermoset matrix composites. Compos. Part A. 27, 1169–1181 (1996)

    Article  Google Scholar 

  27. Cantwell, W.J., Morton, J.: The impact resistance of composite materials. Composites. 22, 347–362 (1991)

    Article  CAS  Google Scholar 

  28. Sierakwski, R.L.: Strain rate effects in composites. J. Appl. Mech. Part 1. 50, 741–761 (1997)

    Article  Google Scholar 

  29. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A. 252, 561–569 (1959)

    Article  Google Scholar 

  30. Tanaka, K., Mori, T.: The hardening of crystals by non-deorming particles and fibers. Acta Metall. 18, 931–941 (1970)

    Article  CAS  Google Scholar 

  31. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  32. Desrumaux, F., Meraghni, F., Benzeggagh, M.L.: Generalised Mori-Tanaka sheme to model anisotropic damage using numerical Eshelby tensor. J. Compos. Mater. 35(7), 603–624 (2001)

    Article  Google Scholar 

  33. Lee, H.K., Simunovic, S.: A damage mechanics model of crack-weakened, chopped fiber composites under impact loading. Compos. Part B: Eng. 33, 25–34 (2002)

    Article  Google Scholar 

  34. Meraghni, F., Benzeggagh, M.L.: Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos. Sci. Technol. 55(2), 171–186 (1995). https://doi.org/10.1016/0266-3538(95)00096-8

    Article  CAS  Google Scholar 

  35. Ben Cheikh Larbi, A., Sai, K., Sidhom, H., Baptiste, D.: Constitutive model of micromechanical damage to predict reduction in stiffness of a fatigued SMC composite. J. Mater. Eng. Perform. 15(5), 575–580 (2006). https://doi.org/10.1361/105994906X124569

    Article  CAS  Google Scholar 

  36. Fitoussi, J., Bourgeois, N., Guo, G., Baptiste, D.: Prediction of the anisotropic damaged behavior of composite materials: introduction of multilocal failure criteria in a micro-macro relationship. Comput. Mater. Sci. 5, 87–100 (1996). https://doi.org/10.1016/0927-0256(95)00061-5

    Article  CAS  Google Scholar 

  37. Fitoussi, J., Guo, G., Baptiste, D.: Determination of a tridimensional failure criterion at the fibre/matrix interface of an organic-matrix/discontinuous-reinforcement composite. Compos. Sci. Technol. 56(7), 755–760 (1996). https://doi.org/10.1016/0266-3538(96)00017-6

    Article  CAS  Google Scholar 

  38. Meraghni, F., Blakeman, C.J., Benzeggagh, M.L.: Effect of interfacial decohesion on stiffness reduction in a random discontinuous-fibre composite containing matrix microcracks. Compos. Sci. Technol. 56(5), 541–555 (1996). https://doi.org/10.1016/0266-3538(96)00039-5

    Article  CAS  Google Scholar 

  39. Kammoun, S., Doghri, I., Brassart, L., Delannay, L.: Micromechanical modeling of the progressive failure in short glass-fiber reinforced thermoplastics - first pseudo-grain damage model. Compos. Appl. Sci. Manuf. 73, 166–175 (2015). https://doi.org/10.1016/j.compositesa.2015.02.017

    Article  CAS  Google Scholar 

  40. Meraghni, F., Desrumaux, F., Benzeggagh, M.L.: Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Compos. Sci. Technol. 62(16), 2087–2097 (2002). https://doi.org/10.1016/S0266-3538(02)00110-0

    Article  CAS  Google Scholar 

  41. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. Lond. A. 241, 376–396 (1957)

    Article  Google Scholar 

  42. Taya, M., Mura, T.: On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks under uniaxial applied stress. J. Appl. Mech. 48, 361–367 (1981)

    Article  Google Scholar 

  43. Morozov, E.V., Morozov, K.E., Selvarajalu, V.: Damage model development for SMC composites. Compos. Struct. 62, 375–380 (2003)

    Google Scholar 

  44. Fitoussi, J.: Etude micromécanique de l’influence de l’endommagement à l’interface fibre/matrice sur le comportement des composites organiques à renforts discontinus. Thesis in ENSAM, Paris (1995)

    Google Scholar 

  45. Bruderick M., Denton D., Shinedling M.: Applications of Carbon Fiber SMC for the Dodge Viper, Proceedings to Automotive Composites Conference & Exhibition(ACCE), Detroit, 2013

  46. Jansen, C.: Isogrid-stiffened automotive suspension control arm. JEC Compos. Mag. 6(82), 38 (2013)

    Google Scholar 

  47. Hangs B., Bücheler D., Karcher M., Henning F.: High-Volume Production of Structural Automobile Parts: Comparative Study of Relevant Composite Technologies, FIPCO Functional Integrated Plastic Components, 2016

  48. Fitoussi, J., Guo, G., Baptiste, D.: A statistical micromechanical model of anisotropic damage for smc composites. Compos. Sci. Technol. 58(5), 759–763 (1998)

    Article  CAS  Google Scholar 

  49. Ayari, H., Fitoussi, J., Imaddahen, A., Tamboura, S., Shirinbayan, M., Dali, H.B., et al.: Two hybrid approaches to fatigue modeling of advanced-sheet molding compounds (A-SMC) composite. Appl. Compos. Mater. (2020). https://doi.org/10.1007/s10443-019-09793-3

  50. Imaddahen M.A., Fitoussi J., Ayari H., Shirinbayan M., Foucard M., Tcharkhtchi A.: Overall investigation of mechanical behavior of short fiber reinforced polypropylene under monotonic and fatigue loading. Submitted to App. Compos. Mater. 2020

  51. Tamboura, S., Ayari, H., Shirinbayan, M., Laribi, M.A., Bendaly, H., Sidhom, H., Tcharkhtchi, A., Fitoussi, J.: Experimental and numerical multi-scale approach for sheet-molding compound composites fatigue prediction based on fiber-matrix interface cyclic damage. Int. J. Fatigue. 135, 105526 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shirinbayan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayari, H., Shirinbayan, M., Imaddahen, A. et al. Micromechanical Modelling of Dynamic Behavior of Advanced Sheet Molding Compound (A-SMC) Composite. Appl Compos Mater 27, 321–335 (2020). https://doi.org/10.1007/s10443-020-09811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09811-9

Keywords

Navigation