Skip to main content
Log in

Influence of Patient-Specific Characteristics on Transcatheter Heart Valve Neo-Sinus Flow: An In Silico Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thrombosis in post-transcatheter aortic valve replacement (TAVR) patients has been correlated with flow stasis in the neo-sinus. This study investigated the effect of the post-TAVR geometry on flow stasis. Computed tomography angiography of 155 patients who underwent TAVR using a SAPIEN 3 were used to identify patients with and without thrombosis, and quantify thrombus volumes. Six patients with 23-mm SAPIEN 3 valves were then selected from the cohort and used to create patient-specific post-TAVR computational fluid dynamic models. Regions of flow stasis (%Volstasis, velocities below 0.05 m/s) were identified. The results showed that all post-TAVR anatomical measurements were significantly different in patients with and without thrombus, but only sinus diameter had a linear correlation with thrombus volume (r = 0.471, p = 0.008). A linear correlation was observed between %Volstasis and thrombus volume (r = 0.821, p = 0.007). The combination of anatomy and valve deployment created a unique geometry in each patient, which when combined with patient-specific cardiac output, resulted in distinct flow patterns. While parametric studies have shown individual anatomical or deployment metrics may relate to flow stasis, the combined effects of these metrics potentially contributes to the biomechanical environment promoting thrombosis, therefore hemodynamic studies of TAVR should account for these patient-specific factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AS:

Aortic stenosis

CAD:

Computer aided design

CFD:

Computational fluid dynamics

CO:

Cardiac output

CTA:

Computed tomography angiography

FSI:

Fluid–structure interaction

HALT:

Hypo-attenuated leaflet thickening

LCA:

Left coronary artery

LVOT:

Left ventricular outflow tract

PIV:

Particle image velocimetry

PLM:

Parametric leaflet model

RCA:

Right coronary artery

SOV:

Sinus of Valsalva

STJ:

Sinotubular junction

TAV:

Transcatheter aortic valve

TAVR:

Transcatheter aortic valve replacement

References

  1. Auricchio, F., M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 17:1347–1357, 2014.

    Article  CAS  Google Scholar 

  2. Barth T. and D. Jespersen. The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1989.

  3. Bianchi, M., G. Marom, R. P. Ghosh, O. M. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18:435–451, 2019.

    Article  Google Scholar 

  4. Chakravarty, T., L. Sondergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, T. H. Jorgensen, T. Rami, S. Israr, G. Fontana, M. de Knegt, A. Fuchs, P. Lyden, A. Trento, D. L. Bhatt, M. B. Leon, R. R. Makkar, and Resolve and S. Investigators. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet 389:2383–2392, 2017.

    Article  Google Scholar 

  5. Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. Boca Raton, FL: CRC Press, 2007.

    Google Scholar 

  6. De Marchena, E., J. Mesa, S. Pomenti, Y. K. C. Marin, X. Marincic, K. Yahagi, E. Ladich, R. Kutz, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring, and R. Virmani. Thrombus formation following transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 8:728–739, 2015.

    Article  Google Scholar 

  7. Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30:1323–1341, 2012.

    Article  Google Scholar 

  8. Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 2001.

    Google Scholar 

  9. Fuchs, A., O. De Backer, M. Brooks, M. C. de Knegt, G. Bieliauskas, M. Yamamoto, R. Yanagisawa, K. Hayashida, L. Sondergaard, and K. F. Kofoed. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves. EuroIntervention 13:e1067–e1075, 2017.

    Article  Google Scholar 

  10. Gunning, P. S., N. Saikrishnan, L. M. McNamara, and A. P. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.

    Article  Google Scholar 

  11. Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157:540–549, 2018.

    Article  Google Scholar 

  12. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng. 47:75–84, 2018.

    Article  Google Scholar 

  13. Jahren, S. E., P. P. Heinisch, D. Hasler, B. M. Winkler, S. Stortecky, T. Pilgrim, M. C. Londono, T. Carrel, H. von Tengg-Kobligk, and D. Obrist. Can bioprosthetic valve thrombosis be promoted by aortic root morphology? An in vitro study. Interact. Cardiovasc. Thorac. Surg. 27:108–115, 2018.

    Article  Google Scholar 

  14. Jilaihawi, H., F. M. Asch, E. Manasse, C. E. Ruiz, V. Jelnin, M. Kashif, H. Kawamori, Y. Maeno, Y. Kazuno, N. Takahashi, R. Olson, J. Alkhatib, D. Berman, J. Friedman, N. Gellada, T. Chakravarty, and R. R. Makkar. Systematic CT methodology for the evaluation of subclinical leaflet thrombosis. JACC Cardiovasc. Imaging 10:461–470, 2017.

    Article  Google Scholar 

  15. Kapadia, S., E. M. Tuzcu, and L. G. Svensson. Anatomy and flow characteristics of neosinus: important consideration for thrombosis of transcatheter aortic valves. Circulation 136:1610–1612, 2017.

    Article  Google Scholar 

  16. Kelm, M., L. Goubergrits, J. Bruening, P. Yevtushenko, J. F. Fernandes, S. H. Sundermann, F. Berger, V. Falk, T. Kuehne, S. Nordmeyer, and C. Group. Model-based therapy planning allows prediction of haemodynamic outcome after aortic valve replacement. Sci. Rep. 7:9897, 2017.

    Article  CAS  Google Scholar 

  17. Langtry, R. B., and F. R. Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47:2894–2906, 2009.

    Article  Google Scholar 

  18. Mack, M. J., M. B. Leon, V. H. Thourani, R. Makkar, S. K. Kodali, M. Russo, S. R. Kapadia, S. C. Malaisrie, D. J. Cohen, P. Pibarot, J. Leipsic, R. T. Hahn, P. Blanke, M. R. Williams, J. M. McCabe, D. L. Brown, V. Babaliaros, S. Goldman, W. Y. Szeto, P. Genereux, A. Pershad, S. J. Pocock, M. C. Alu, J. G. Webb, and C. R. Smith. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 380:1695–1705, 2019.

    Article  Google Scholar 

  19. Madukauwa-David, I. D., P. A. Midha, R. Sharma, K. McLain, R. Mitra, K. Crawford, S. H. Yoon, R. R. Makkar, and A. P. Yoganathan. Characterization of aortic root geometry in transcatheter aortic valve replacement patients. Catheter Cardiovasc. Interv. 93:134–140, 2018.

    Article  Google Scholar 

  20. Madukauwa-David, I. D., V. Sadri, P. A. Midha, V. Babaliaros, C. Aidun, and A. P. Yoganathan. An evaluation of the influence of coronary flow on transcatheter heart valve neo-sinus flow stasis. Ann. Biomed. Eng. 48:169–180, 2019.

    Article  Google Scholar 

  21. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. De Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C. A. Kliger, H. Guo, A. D. Pichard, N. J. Weissman, S. Kapadia, E. Manasse, D. L. Bhatt, M. B. Leon, and L. Sondergaard. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.

    Article  CAS  Google Scholar 

  22. Menter, F. R., R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker. A correlation-based transition model using local variables—Part I: model formulation. J. Turbomach. 128:413–422, 2004.

    Article  Google Scholar 

  23. Midha, P. A., V. Raghav, J. F. Condado, I. U. Okafor, S. Lerakis, V. H. Thourani, V. Babaliaros, and A. P. Yoganathan. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model. JACC Cardiovasc. Interv. 9:1618–1628, 2016.

    Article  Google Scholar 

  24. Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 136:1598–1609, 2017.

    Article  Google Scholar 

  25. Moore, B., and L. P. Dasi. Spatio-temporal complexity of the aortic sinus vortex. Exp. Fluids 55:1770, 2014.

    Article  Google Scholar 

  26. Pache, G., S. Schoechlin, P. Blanke, S. Dorfs, N. Jander, C. D. Arepalli, M. Gick, H. J. Buettner, J. Leipsic, M. Langer, F. J. Neumann, and P. Ruile. Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves. Eur. Heart J. 37:2263–2271, 2016.

    Article  Google Scholar 

  27. Popma, J. J., G. M. Deeb, S. J. Yakubov, M. Mumtaz, H. Gada, D. O’Hair, T. Bajwa, J. C. Heiser, W. Merhi, N. S. Kleiman, J. Askew, P. Sorajja, J. Rovin, S. J. Chetcuti, D. H. Adams, P. S. Teirstein, G. L. Zorn, III, J. K. Forrest, D. Tchetche, J. Resar, A. Walton, N. Piazza, B. Ramlawi, N. Robinson, G. Petrossian, T. G. Gleason, J. K. Oh, M. J. Boulware, H. Qiao, A. S. Mugglin, M. J. Reardon, and I. Evolut Low Risk Trial. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 380:1706–1715, 2019.

    Article  Google Scholar 

  28. Raghav, V., C. Clifford, P. Midha, I. Okafor, B. Thurow, and A. Yoganathan. Three-dimensional extent of flow stagnation in transcatheter heart valves. J. R. Soc. Interface 16:20190063, 2019.

    Article  Google Scholar 

  29. Raghav, V., S. Sastry, and N. Saikrishnan. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): recommendations for best practices. Cardiovasc. Eng. Technol. 9:273–287, 2018.

    Article  Google Scholar 

  30. Ruile, P., J. Minners, P. Breitbart, S. Schoechlin, M. Gick, G. Pache, F. J. Neumann, and M. Hein. Medium-term follow-up of early leaflet thrombosis after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 11:1164–1171, 2018.

    Article  Google Scholar 

  31. Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific Lotus™ valve: an in vitro study. Cardiovasc. Eng. Technol. 4:427–439, 2013.

    Article  Google Scholar 

  32. Singh-Gryzbon, S., V. Sadri, M. Toma, E. L. Pierce, Z. A. Wei, and A. P. Yoganathan. Development of a computational method for simulating tricuspid valve dynamics. Ann. Biomed. Eng. 47:1422–1434, 2019.

    Article  Google Scholar 

  33. Tan, F. P. P., A. Borghi, R. H. Mohiaddin, N. B. Wood, S. Thom, and X. Y. Xu. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput. Struct. 87:680–690, 2009.

    Article  Google Scholar 

  34. Tang, G. H. L., S. Verma, and D. L. Bhatt. Transcatheter aortic valve replacement in low-risk patients. Circulation 140:801–803, 2019.

    Article  Google Scholar 

  35. Toninato, R., J. Salmon, F. M. Susin, A. Ducci, and G. Burriesci. Physiological vortices in the sinuses of Valsalva: an in vitro approach for bio-prosthetic valves. J. Biomech. 49:2635–2643, 2016.

    Article  Google Scholar 

  36. Trusty, P. M., V. Sadri, I. D. Madukauwa-David, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. Neosinus flow stasis correlates with thrombus volume post-TAVR: a patient-specific in vitro study. JACC Cardiovasc. Interv. 12:1288–1290, 2019.

    Article  Google Scholar 

  37. Xu, F., S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, T. J. R. Hughes, M. S. Sacks, and M.-C. Hsu. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int. J. Numer. Method Biomed. Eng. 34:e2938, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported with funds from the Wallace H. Coulter Chair Endowment and the Marvin H. and Rita Floyd Endowment. Beatrie Ncho also holds an International Fellowship from American Association of University Women. The authors acknowledge the use of ANSYS software which was provided through an Academic Partnership between ANSYS, Inc.; the Cardiovascular Fluid Mechanics Laboratory at Georgia Tech, particularly Mandy Salmon and Joe Kun Huck Choi; and Ming-Chen Hsu and Fei Xu from Iowa State University for their assistance with the parametric leaflet modeling.

Conflicts of interest

Philipp Blanke is a Consultant for Edwards Lifesciences, Tendyne, Neovasc and Circle Cardiovascular Imaging. Ajit Yoganathan is a Consultant or Researcher for St. Jude Medical, Boston Scientific, Sorin Biomedica and Edwards Lifesciences. The other authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh-Gryzbon, S., Ncho, B., Sadri, V. et al. Influence of Patient-Specific Characteristics on Transcatheter Heart Valve Neo-Sinus Flow: An In Silico Study. Ann Biomed Eng 48, 2400–2411 (2020). https://doi.org/10.1007/s10439-020-02532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02532-x

Keywords

Navigation