Skip to main content
Log in

Extremal growth of polynomials

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We give an exposition of some simple but applicable cases of worst-case growth of a polynomial in terms of its uniform norm on a given compact set K ⊂ ℂd. Included is a direct verification of the formula for the pluripotential extremal function for a real simplex. Throughout we attempt to make the exposition as accessible to a general (analytic) audience as possible, avoiding wherever possible the finer details of Pluripotential Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baran, Siciak’s extremal function of convex sets in ℂn, Ann. Polon. Mat., 48 (1988), 275–280.

    Article  MathSciNet  Google Scholar 

  2. M. Baran, Bernstein type theorems for compact sets in ℝn, J. Approx. Theory, 69 (1992), 156–166.

    Article  MathSciNet  Google Scholar 

  3. M. Baran, Conjugate norms in Cn and related geometrical problems, Dissertationes Math. (Rozprawy Mat.), 377 (1998).

  4. M. Baran and W. Pleśniak, Markov’s exponent of compact sets in ℂn, Proc. Amer. Math. Soc., 123 (1995), 2785–2791.

    MathSciNet  MATH  Google Scholar 

  5. R. Berman, S. Boucksom and D. W. Nystrom, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., 207 (2011), 1–27.

    Article  MathSciNet  Google Scholar 

  6. T. Bloom, L. Bos, J.-P. Calvi and N. Levenberg, Polynomial interpolation and approximation ind, Ann. Polon. Math., 106 (2012), 53–81.

    Article  MathSciNet  Google Scholar 

  7. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag (New York, 1995).

  8. L. Bos, J.-P. Calvi and N. Levenberg, On the Siciak extremal function for real compact convex sets, Ark. Mat., 39 (2001), 245–262.

    Article  MathSciNet  Google Scholar 

  9. R. J. Duffin and A. C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc., 50 (1941), 517–528.

    Article  MathSciNet  Google Scholar 

  10. P. Erdős, Some remarks on polynomials, Bull. Amer. Math. Soc., 53 (1947), 1169–1176.

    Article  MathSciNet  Google Scholar 

  11. M. Klimek, Pluripotential Theory, Oxford Uinversity Press (1991).

    MATH  Google Scholar 

  12. A. Kroó and D. Schmidt, Some extremal problems for multivariate polynomials on convex bodies, J. Approx. Theory, 90 (1997), 415–434.

    Article  MathSciNet  Google Scholar 

  13. S. Ma‘u, Computing the extremal function using simplices and strips, arXiv:1908.07118 (preprint).

  14. T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press (Cambridge, 1995).

  15. T. J. Rivlin, The Chebyshev Polynomials, John Wiley and Sons (1974).

    MATH  Google Scholar 

  16. J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., 105 (1962), 322–357.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ma’u.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bos, L., Ma’u, S. & Waldron, S. Extremal growth of polynomials. Anal Math 46, 195–224 (2020). https://doi.org/10.1007/s10476-020-0028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-020-0028-8

Key words and phrases

Mathematics Subject Classification

Navigation