Skip to main content

Advertisement

Log in

Numerical and Experimental Research on Fluid Flow, Solidification, and Bonding Strength During the Twin-Roll Casting of Cu/Invar/Cu Clad Strips

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new twin-roll casting (TRC) process to produce Cu/Invar/Cu clad strips, which have greater application potential, is proposed. The symmetrical cast-rolling zone is divided into two asymmetrical parts by introducing the substrate strip in the middle. The thermal-flow coupled simulation was conducted, and it realized the coupling analysis of casting roll, molten pool, and substrate strip. The results indicate that the kissing point (KP) shape in each part is asymmetric and vortexes are more likely to occur near the KP. Besides, univariate analyses show that the influence of the cast-rolling velocity, substrate preheat temperature and casting temperature on the KP length and average outlet temperature is linear, and the influence of the substrate thickness is nonlinear. Process window prediction models were obtained, which laid the foundation of setting process parameter combinations for providing the required KP length. Furthermore, numerical simulation results indicate that the fluidity of the liquid metal ensures the continuity of production. The macro-structures evolution in the cast-rolling zone indicates that deformation below the KP ensures the quality of the product. Finally, the Cu/Invar/Cu clad strips with metallurgical bonding were fabricated. The ultimate tensile strength and maximum peeling strength are 250 MPa and 126.5 N/mm, respectively. Hence, the TRC process for trimetallic clad strips is developed successfully and stability is basically achieved through equipment design, process window prediction, experimental validation, and bonding strength characterization. These methods can be conducive to the development of other new TRC processes for multiply clad strips.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. [1] Y. Zhao, W.N. Zhang, X. Liu, Z.Y. Liu, and G.D. Wang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6292–6303.

    Article  Google Scholar 

  2. [2] M. Xu, and M. Zhu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 740–48.

    Article  Google Scholar 

  3. [3] C. Ji, H.G. Huang, J.N. Sun, and P. Chen: J. Manuf. Process, 2018, vol. 34, pp. 593–602.

    Article  Google Scholar 

  4. [4] J.J. Park: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4748–58.

    Article  Google Scholar 

  5. [5] J. Park, H. Song, J.S. Kim, S.S. Sohn, and S. Lee: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 57–62.

    Article  Google Scholar 

  6. [6] C. Ji, H.G. Huang, and J.N. Sun: Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 1305–14.

    Article  CAS  Google Scholar 

  7. [7] O. Grydin, G. Gerstein, F. Nurnberger, M. Schaper, and V. Danchenko: J. Manuf. Process, 2013, vol. 15, pp. 501–07.

    Article  Google Scholar 

  8. [8] M. Vidoni, R. Ackermann, S. Richter, and G. Hirt: Adv. Eng. Mater., 2015, vol. 17, pp. 1588–97.

    Article  CAS  Google Scholar 

  9. [9] H.G. Huang, Y.K. Dong, M. Yan, and F.S. Du: Trans. Nonferr. Metal Soc., 2017, vol. 27, pp. 1019–25.

    Article  CAS  Google Scholar 

  10. [10] T. Haga, K. Okamura, S. Nishida, H. Watari, and K. Matsuzaki: Mater. Sci. Forum, 2017, vol. 879, pp. 671–76.

    Article  Google Scholar 

  11. [11] H.G. Huang, P. Chen, and C. Ji: Mater. Des., 2017, vol. 118, pp. 233–44.

    Article  CAS  Google Scholar 

  12. [12] D. Münster, B. Zhang, and G. Hirt: Steel Res. Int., 2016, vol. 88, pp. 1–7.

    Google Scholar 

  13. [13] R. Nakamura, T. Yamabayashi, T. Haga, S. Kumai, and H. Watari: Archives of Materials Science and Engineering, 2010, vol. 41(2), pp. 112–20.

    Google Scholar 

  14. [14] J.J. Park: Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 491–99.

    Article  CAS  Google Scholar 

  15. [15] B.X. Liu, J.Y. Wei, M.X. Yang, F.X. Yin, and K.C. Xu: Vacuum, 2018, vol. 154, pp. 250–58.

    Article  CAS  Google Scholar 

  16. [16] D. Münster, and G. Hirt: Metals, 2019, vol. 9, pp. 1156-61.

    Article  Google Scholar 

  17. [17] M. Vidoni, M. Daamen, and G. Hirt: Key Eng. Mater. Trans Tech Publications, 2015, vol. 651, pp. 689–94.

    Article  Google Scholar 

  18. [18] P. Chen, H.G. Huang, C. Ji, X. Zhang, and Z.H. Sun: Trans.Nonferrous Met. Soc. China, 2018, vol. 28, pp. 2460-69.

    Article  CAS  Google Scholar 

  19. [19] V.R. Voller, and C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  20. [20] P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, D. Hamilton, and C. Hamilton: Appl. Therm. Eng., 2018, vol. 134, pp. 275–86.

    Article  Google Scholar 

  21. [21] J.J. Park: Int. J. Heat Mass Transfer, 2016, vol. 100, pp. 590–98.

    Article  CAS  Google Scholar 

  22. [22] H. Zhang, C. Zhou, and C. Wei: ISIJ International, 2017, vol. 57, pp. 1811–20.

    Article  CAS  Google Scholar 

  23. [23] M. Stolbchenko, O. Grydin, A. Samsonenko, V. Khvist, and M. Schaper: Forsch Ingenieurwes, 2014, vol. 3, pp. 121–30.

    Article  Google Scholar 

  24. [24] C. Ji, H.G. Huang, J.P. Zhang, and R.D. Zhao: Appl. Therm. Eng., 2019, vol. 158, pp. 113818.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (51974278, 51474189), the Natural Science Foundation of Hebei Province Distinguished Young Fund Project (E2018203446), the Graduate Student Innovation Project of Hebei Province (CXZS201803, CXZZBS2019047), and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huagui Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Huang, H., Zhang, X. et al. Numerical and Experimental Research on Fluid Flow, Solidification, and Bonding Strength During the Twin-Roll Casting of Cu/Invar/Cu Clad Strips. Metall Mater Trans B 51, 1617–1631 (2020). https://doi.org/10.1007/s11663-020-01854-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01854-4

Navigation