Skip to main content
Log in

Flows on the \(\mathbf{PGL(V)}\)-Hitchin Component

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this article we define new flows on the Hitchin components for \(\mathrm {PGL}(V)\). Special examples of these flows are associated to simple closed curves on the surface and give generalized twist flows. Other examples, so called eruption flows, are associated to pair of pants in S and capture new phenomena which are not present in the case when \(n=2\). We determine a global coordinate system on the Hitchin component. Using the computation of the Goldman symplectic form on the Hitchin component, that is developed by two of the authors in a companion paper to this article (Sun and Zhang in The Goldman symplectic form on the \(\mathrm{PGL} ({V})\)-Hitchin component, 2017. arXiv:1709.03589), this gives a global Darboux coordinate system on the Hitchin component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Bonahon and G. Dreyer. Parameterizing Hitchin components. Duke Math. J, (15)163 (2014), 2935–2975

    Article  MathSciNet  Google Scholar 

  2. F. Bonahon and G. Dreyer. Hitchin characters and geodesic laminations. Acta Math, (2)218 (2017), 201–295

    Article  MathSciNet  Google Scholar 

  3. F. Bonahon. Geodesic laminations on surfaces. Contemporary Mathematics, 269 (2001), 1–38

    Article  MathSciNet  Google Scholar 

  4. A.J. Casson and S.A. BleilerAutomorphisms of Surfaces After Nielsen and Thurston, Vol. 9. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  5. V. Fock and A. Goncharov. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci, 103 (2006), 1–211

    Article  Google Scholar 

  6. W.M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. in Math, (2)54 (1984), 200–225

    Article  MathSciNet  Google Scholar 

  7. W.M. Goldman. Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math, (2)85 (1986), 263–302

    Article  MathSciNet  Google Scholar 

  8. W.M. Goldman. Convex real projective structures on compact surfaces. J. Differential Geom, (3)31 (1990), 791–845

    Article  MathSciNet  Google Scholar 

  9. W.M. Goldman. Bulging deformations of convex \({\mathbb{R}}{\mathbb{P}}^2\)-manifolds, Preprint arXiv:1302.0777 (2013)

  10. O. Guichard. Composantes de Hitchin et représentations hyperconvexes de groupes de surface. J. Differential Geom, (3)80 (2008), 391–431

    Article  MathSciNet  Google Scholar 

  11. N.J. Hitchin. Lie groups and Teichmüller space. Topology, (3)31 (1992), 449–473

    Article  MathSciNet  Google Scholar 

  12. F. Labourie, A. Flows, surface groups and curves in projective space. Inventiones mathematicae, (1)165 (2006), 51–114

    Article  MathSciNet  Google Scholar 

  13. F. Labourie and G. McShane. Cross ratios and identities for higher Teichmüller-Thurston theory, Duke Math. J. (2)149 (2009), 279–345

    Article  MathSciNet  Google Scholar 

  14. R.C. Penner and J. Harer. Combinatorics of train tracks. Princeton University Press, Princeton (1992)

    Book  Google Scholar 

  15. Z. Sun and T. Zhang. The Goldman symplectic form on the \({\rm PGL} ({V})\)-Hitchin component, Preprint arXiv:1709.03589 (2017)

  16. W.P. Thurston. The Geometry and Topology of Three-Manifolds. Princeton University, Princeton, NJ (1979)

    Google Scholar 

  17. S. Wolpert. The Fenchel-Nielsen deformation. Annals of Mathematics, (3)115 (1982), 501–528

    Article  MathSciNet  Google Scholar 

  18. S. Wolpert. On the symplectic geometry of deformations of a hyperbolic surface. Annals of Mathematics, (2)117 (1983), 207–234

    Article  MathSciNet  Google Scholar 

  19. A. Wienhard and T. Zhang. Deforming convex real projective structures. Geometriae Dedicata, (2017), 1–34

  20. T. Zhang. Degeneration of Hitchin representations along internal sequences. Geom. Funct. Anal, (5)25 (2015), 1588–1645

    Article  MathSciNet  Google Scholar 

  21. T. Zhang. Geometry of the Hitchin component. PhD Thesis. University of Michigan (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengren Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ZS was partially supported by the Luxembourg National Research Fund (FNR) AFR bilateral Grant COALAS 11802479-2. AW was partially supported by the National Science Foundation under Agreements DMS-1536017 and 1566585, by the Sloan Foundation, by the Deutsche Forschungsgemeinschaft, by the European Research Council under ERC-Consolidator Grant 614733, and by the Klaus Tschira Foundation. TZ was partially supported by the National Science Foundation under agreements DMS-1536017, and by the NUS-MOE Grant R-146-000-270-133. The authors acknowledge support from U.S. National Science Foundation Grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network).

Appendices

Appendix A. Proof of Proposition 2.23

In this appendix, we give a proof of Proposition 2.23, which we restate here for the convenience of the reader.

Proposition

Let \((F_1,\dots ,F_k)\) be a positive k-tuple of flags in \({\mathcal {F}}(V)\). Then for any positive integers \(n_1\), \(\dots \), \(n_k\) that sum to \(d\le n\), we have that

$$\begin{aligned} \dim \left( \sum _{j=1}^kF_j^{(n_j)}\right) =d. \end{aligned}$$

We start with the following two notions.

Definition A.1

 

  1. (1)

    A map \(\zeta :S^1\rightarrow {\mathbb {P}}(V)\) is convex if \(\zeta (x_1)+\dots +\zeta (x_k)\) is a direct sum for all \(k\le n:=\dim (V)\) and for all pairwise distinct \(x_1\), ..., \(x_k\) in \(S^1\).

  2. (2)

    Let F be a flag in \({\mathcal {F}}(V)\) and let \(\zeta :S^1\rightarrow {\mathbb {P}}(V)\) be a convex curve. We say \(\zeta \)osculatesF if there is some point x in \(S^1\) such that \(\zeta (x)=F^{(1)}\), and for all \(l=1\), ..., \(d-1\),

    $$\begin{aligned} \lim _{i\rightarrow \infty }\zeta (x_{1,i})+..+\zeta (x_{l,i})=F^{(l)} \end{aligned}$$

    for all pairwise distinct points l-tuples of points \((x_{1,i},...,x_{l,i})\) in \(S^1\) such that \(\lim _{i\rightarrow \infty }(x_{1,i},\dots ,x_{l,i})=(x,\dots ,x)\).

For the proof, we use the following facts. The first is due to Fock and Goncharov [FG06, Theorem 1.3 and Section 9.11].

Theorem A.2

([FG06]). Let \((F_1,\dots ,F_k)\) be a positive triple of flags in \({\mathcal {F}}(V)\). Then there is a continuous convex map \(\zeta :S^1\rightarrow {\mathcal {F}}(V)\) that osculates \(F_l\) for all \(l=1\), ..., k.

The second is an immediate consequence of Proposition 2.11.

Proposition A.3

The space \({\mathcal {F}}(V)^3_+\) of positive triples of flags in V is a connected component of the space of \({\mathcal {F}}(V)^{[3]}\) of generic triples of flags in V.

Using these, we prove the following key lemma.

Lemma A.4

Let \(k\ge 4\) be an integer, let \((F_1,\dots ,F_k)\) be a positive k-tuple of flags in \({\mathcal {F}}(V)\) and let \(m=1\), ..., \(n-1\). Let H be the flag defined by

$$\begin{aligned} H^{(i)}:=\left\{ \begin{array}{ll} F_2^{(i)}&{}\quad \text {if } i\le m;\\ F_2^{(m)}+F_3^{(i-m)}&{}\quad \text {if }i>m. \end{array}\right. \end{aligned}$$

Then \((F_1,H,F_4,\dots ,F_k)\) is a positive \((k-1)\)-tuple of flags.

Proof

Note that \((F_1,F_2,F_4,\dots ,F_k)\) is a positive k-tuple of flags and \(H^{(1)}=F_2^{(1)}\). Thus, by Proposition 2.19, it is sufficient to prove that \((F_1,H,F_4)\) is a positive triple of flags.

Let \(\zeta \) be a continuous convex map that osculates the flags \(F_1\), ..., \(F_4\). For all \(l=1\), \(\dots \), 4, let \(x_l\) be the point in \(S^1\) such that \(\zeta (x_l)=F_l^{(1)}\). It is a consequence of Proposition 2.19 that \({\mathcal {F}}(V)^4_+\) is open in the space of pairwise transverse quadruple of flags. Thus, there are pairwise disjoint open intervals \(I_1\), ..., \(I_4\subset S^1\) such that \(I_l\) contains \(x_l\), and satisfy the following property: For all cyclically ordered \((n-1)\)-tuple of points \({\mathbf {y}}_l:=(y_{l,1},\dots ,y_{l,n-1})\) in \(I_l\), let \(F_{{\mathbf {y}}_l}\) be the flag in \({\mathcal {F}}(V)\) given by \(F_{\mathbf{y}_l}^{(i)}:=\sum ^i_{j=1}\zeta (y_{l,j})\). Then \((F_{\mathbf{y}_1},\dots ,F_{{\mathbf {y}}_4})\) is a positive quadruple of flags.

Now, for each \(i=1\), ..., \(n-1\), let \(f_i:[0,1]\rightarrow S^1\) be continuous paths such that

  • \(f_i(0)=y_{2,i}\).

  • \(f_i(1)=\left\{ \begin{array}{ll} y_{2,i}&{}\quad \text {if } i\le m;\\ y_{3,i-m}&{}\quad \text {if }i>m. \end{array}\right. \)

  • \(f_i(0)\le f_i(t)\le f_i(1)\le f_i(0)\) for all t in [0, 1].

  • \(\big (f_1(t),\dots ,f_{n-1}(t)\big )\) is a cyclically ordered \((n-1)\)-tuple of points in \(\partial \Gamma \) for all t in [0, 1].

Such paths \(f_i\) exist because \(({\mathbf {y}}_2,{\mathbf {y}}_3)\) is a cyclically ordered \((2n-2)\)-tuple of points.

Since \(\zeta \) is convex, we may define \(G(t)=G({\mathbf {y}}_2,\mathbf{y}_3,t)\) to be the flag in \({\mathcal {F}}(V)\) given by \(G(t)^{(j)}:=\sum ^j_{i=1}\zeta (f_i(t))\). Since \(G(0)=F_{\mathbf{y}_2}\), we see that \((F_{{\mathbf {y}}_1},G(0),F_{{\mathbf {y}}_4})\) is a positive triple of flags. The convexity of \(\zeta \) also implies that \((F_{{\mathbf {y}}_1},G(t),F_{{\mathbf {y}}_4})\) is a generic for all t. Since \({\mathcal {F}}(V)^3_+\) is a connected component of \({\mathcal {F}}(V)^{[3]}\) and \(t\mapsto G(t)\) is continuous, it follows that \((F_{\mathbf{y}_1},G(1),F_{{\mathbf {y}}_4})\) is also a positive triple of flags.

Observe that

  • for \(l=1\), 4, the limit of \(F_{{\mathbf {y}}_l}\) as \(\mathbf{y}_l\) converges to \((x_l,\dots ,x_l)\) is \(F_l\),

  • the limit of \(G({\mathbf {y}}_2,{\mathbf {y}}_3,1)\) as \((\mathbf{y}_2,{\mathbf {y}}_3)\) converges to \((x_2,\dots ,x_2,x_3,\dots ,x_3)\) is H.

Since \({\mathcal {F}}(V)^3_+\) is closed in the space of pairwise transverse triple of flags, this implies that \((F_1,H,F_4)\) is a positive triple of flags. \(\square \)

Proof of Proposition 2.23

We prove this by induction on k. For the base case \(k=3\), this is an immediate consequence of Proposition 2.11.

Next, we prove the inductive step. Suppose that \(k\ge 4\). Let H be the flag in \({\mathcal {F}}(V)\) defined by

$$\begin{aligned} H^{(i)}:=\left\{ \begin{array}{ll} F_2^{(i)}&{}\quad \text {if } i\le n_2;\\ F_2^{(n_2)}+F_3^{(i-n_2)}&{}\quad \text {if }i> n_2. \end{array}\right. \end{aligned}$$

By Lemma A.4, we see that \((F_1,H,F_4,\dots ,F_k)\) is a positive \((k-1)\)-tuple of flags. We further observe that

$$\begin{aligned} \sum _{j=1}^kF_j^{(n_j)}=F_1^{(n_1)}+H^{(n_2+n_3)}+\sum _{j=4}^kF_j^{(n_j)}. \end{aligned}$$

The statement now follows by applying the inductive hypothesis to the right hand side. \(\square \)

Appendix B. Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1, which we restate here for the reader’s convenience.

Lemma

Let \({\mathcal {V}}\) denote the set of vertices of \({\widetilde{{\mathcal {T}}}}\), and for non-negative integers j, let \(\xi _j\) be a Frenet curve in \(\widetilde{\mathrm {Fre}}(V)\). If \(\lim _{j\rightarrow \infty }\xi _j(p)=\xi _0(p)\) for all vertices p in \({\widetilde{{\mathcal {V}}}}\), then \(\lim _{j\rightarrow \infty }\xi _j(p)=\xi _0(p)\) for all points p in \(\partial \Gamma \).

Let xyz be the vertices of a triangle in \({\widetilde{\Theta }}\), let w be any point in \(\partial \Gamma \setminus {\mathcal {V}}\), and assume without loss of generality that \(y<z<x<w<y\) in this cyclic order in \(S^1\). By Proposition 2.19, to conclude that \(\lim _{j\rightarrow \infty }\xi _j(w)=\xi _0(w)\), it is sufficient to show that

  1. (1)

    For any pair \({\mathbf {i}}\) of positive integers that sum to n,

    $$\begin{aligned} C^{\mathbf{i}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(w))=\lim _{j\rightarrow \infty }C^{\mathbf{i}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(w)). \end{aligned}$$
  2. (2)

    For any triple of positive integers \({\mathbf {i}}\) that sum to n,

    $$\begin{aligned} T^{\mathbf{i}}(\xi _0(x),\xi _0(w),\xi _0(y))=\lim _{j\rightarrow \infty }T^{\mathbf{i}}(\xi _j(x),\xi _j(w),\xi _j(y)). \end{aligned}$$

Since \({\mathcal {V}}\) is dense in \(\partial \Gamma \), there are sequences \(\{a_k\}_{k=1}^\infty \) and \(\{b_k\}_{k=1}^\infty \) in \({\mathcal {V}}\) such that \(\lim _{k\rightarrow \infty }a_k=\lim _{k\rightarrow \infty }b_k=w\) and \(y<z<x<a_k<w<b_k<y\) for all k.

Proof of (1)

Since \(\xi _0\) is continuous, we have

$$\begin{aligned} \lim _{k\rightarrow \infty }C^{\mathbf{i}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(a_k))= & {} \lim _{k\rightarrow \infty }C^{\mathbf{i}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(b_k))\\= & {} C^{\mathbf {i}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(w)) \end{aligned}$$

for all pairs of positive integers \({\mathbf {i}}\) that sum to n. Furthermore, it is also well-known (see for example Proposition 2.12 of [Zha15a]) that

$$\begin{aligned} C^{\mathbf {i}}(\xi _j(x),\xi _j(a_k),\xi _j(y),\xi _j(w)),\,\,\,\,C^\mathbf{i}(\xi _j(x),\xi _j(w),\xi _j(y),\xi _j(b_k))>1 \end{aligned}$$

for all non-negative integers j and all positive integers k. In particular,

$$\begin{aligned} \begin{array}{l} C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(a_k))>C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(w))\\ >C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(b_k)). \end{array} \end{aligned}$$

Since \(\lim _{j\rightarrow \infty }\xi _j(p)=\xi _0(p)\) for any vertex p in \({\mathcal {V}}\), we see that

$$\begin{aligned} C^{{\mathbf {i}}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(w))= & {} \lim _{k\rightarrow \infty }C^{{\mathbf {i}}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(a_k))\\= & {} \lim _{k\rightarrow \infty }\lim _{j\rightarrow \infty }C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(a_k))\\\ge & {} \lim _{j\rightarrow \infty }C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(w))\\\ge & {} \lim _{k\rightarrow \infty }\lim _{j\rightarrow \infty }C^{{\mathbf {i}}}(\xi _j(x),\xi _j(z),\xi _j(y),\xi _j(b_k))\\= & {} \lim _{k\rightarrow \infty }C^{{\mathbf {i}}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(b_k))\\= & {} C^{{\mathbf {i}}}(\xi _0(x),\xi _0(z),\xi _0(y),\xi _0(w)). \end{aligned}$$

This proves (1). \(\square \)

To prove (2), we need to use the following lemma. Let \(\mathbf{i}:=(i_1,i_2,i_3)\) be a triple of positive integers that sum to n. For any generic quadruple of flags \(F_1,F_2,F_3,F_4\) in \({\mathcal {F}}(V)\), define

$$\begin{aligned} \begin{array}{l}T^{(i_1,i_2,F_4,i_3)}(F_1,F_2,F_3)\\ := \displaystyle \frac{F_1^{(i_1+1)}\wedge F_2^{(i_2)}\wedge F_3^{(i_3-1)}\cdot F_1^{(i_1-1)}\wedge F_2^{(i_2)}\wedge F_4^{(1)}\wedge F_3^{(i_3)}\cdot F_1^{(i_1)}\wedge F_2^{(i_2-1)}\wedge F_3^{(i_3+1)}}{F_1^{(i_1+1)}\wedge F_2^{(i_2-1)}\wedge F_3^{(i_3)}\cdot F_1^{(i_1)}\wedge F_2^{(i_2)}\wedge F_4^{(1)}\wedge F_3^{(i_3-1)}\cdot F_1^{(i_1-1)}\wedge F_2^{(i_2)}\wedge F_3^{(i_3+1)}} \end{array} \end{aligned}$$

Lemma B.1

Let \(\xi :S^1\rightarrow {\mathcal {F}}(V)\) be a Frenet curve and let \(x_1<x_4<x_2<x_5<x_3<x_1\) lie in \(S^1\) in this cyclic order. For each \(m=1\), \(\dots \), 5, let \(F_m:=\xi (x_m)\), then

$$\begin{aligned} T^{(i_1,i_2,F_4,i_3)}(F_1,F_2,F_3)>T^{\mathbf{i}}(F_1,F_2,F_3)>T^{(i_1,i_2,F_5,i_3)}(F_1,F_2,F_3). \end{aligned}$$

(Recall that we assume \(\dim (V)\ge 3\).)

Proof

Let \(K:=F_1^{(i_1-1)}+F_2^{(i_2-1)}+F_3^{(i_3-1)}\). For \(m=1\), 2, 3, let \(L_{m}\subset V\) be a line such that \(F_m^{(i_m-1)}+L_{m}=F_m^{(i_m)}\), and let \(P_{m}\subset V\) be a plane such that \(F_m^{(i_m-1)}+P_{m}=F_m^{(i_m+1)}\). For any point x in \(S^1\), let

$$\begin{aligned} L_x:=\left\{ \begin{array}{ll} \xi ^{(1)}(x)&{}\quad \text {if }x\ne x_1,\,x_2,\,x_3;\\ L_{m}&{}\quad \text {if }x=x_m; m=1,\,2,\,3, \end{array}\right. \,\,\,P_x:=\left\{ \begin{array}{ll} \xi ^{(2)}(x)&{}\quad \text {if }x\ne x_1,\,x_2,\,x_3;\\ P_{m}&{}\quad \text {if }x=x_m; m=1,\,2,\,3, \end{array}\right. \end{aligned}$$

and let \(H:=L_{x_1}+L_{x_2}+L_{x_3}(=L_1+L_2+L_3)\). Then define \(\xi ':S^1\rightarrow {\mathcal {F}}(H)\) by

$$\begin{aligned} \xi '^{(1)}(x):=(K+L_x)\cap H, \,\,\,\,\,\xi '^{(2)}(x):=(K+P_x)\cap H. \end{aligned}$$

One can verify that \(\xi '\) does not depend on the choices of \(L_{m}\) and \(P_{m}\), and is Frenet.

Furthermore, from the definition of the triple ratio, we see that

$$\begin{aligned} T^{(i_1,i_2,F_4,i_3)}(F_1,F_2,F_3)= & {} T^{(1,1,\xi '(x_4),1)}(\xi '(x_1),\xi '(x_2),\xi '(x_3)),\\ T^{{\mathbf {i}}}(F_1,F_2,F_3)= & {} T^{(1,1,1)}(\xi '(x_1),\xi '(x_2),\xi '(x_3)),\\ T^{(i_1,i_2,F_5,i_3)}(F_1,F_2,F_3)= & {} T^{(1,1,\xi '(x_5),1)}(\xi '(x_1),\xi '(x_2),\xi '(x_3)). \end{aligned}$$

Thus, it is sufficient to prove this lemma in the case when \(\dim (V)=3\). That is a straightforward computation (see Proposition 2.3.4 of [Zha15b]). \(\square \)

Proof of (2)

The Frenet property of \(\xi _0\) implies that

$$\begin{aligned} \lim _{k\rightarrow \infty }T^{(i_1,i_2,\xi _0(a_k),i_3)}(\xi _0(x),\xi _0(w),\xi _0(y))= & {} T^{{\mathbf {i}}}(\xi _0(x),\xi _0(w),\xi _0(y))\\= & {} \lim _{k\rightarrow \infty }T^{(i_1,i_2,\xi _0(b_k),i_3)}(\xi _0(x),\xi _0(w),\xi _0(y)) \end{aligned}$$

for all ordered triples of positive integers \(\mathbf{i}:=(i_1,i_2,i_3)\) that sum to n. Also, by Lemma B.1, we have

$$\begin{aligned} \begin{array}{l} T^{(i_1,i_2,\xi _j(a_k),i_3)}(\xi _j(x),\xi _j(w),\xi _j(y))>T^{{\mathbf {i}}}(\xi _j(x),\xi _j(w),\xi _j(y))\\ >T^{(i_1,i_2,\xi _j(b_k),i_3)}(\xi _j(x),\xi _j(w),\xi _j(y)) \end{array} \end{aligned}$$

for all non-negative integers j and all positive integers k.

Since \(\lim _{j\rightarrow \infty }\xi _j(p)=\xi _0(p)\) for all vertices p in \({\mathcal {V}}\), this implies that

$$\begin{aligned} T^{{\mathbf {i}}}(\xi _0(x),\xi _0(w),\xi _0(y))= & {} \lim _{k\rightarrow \infty }T^{(i_1,i_2,\xi _0(a_k),i_3)}(\xi _0(x),\xi _0(w),\xi _0(y))\\= & {} \lim _{k\rightarrow \infty }\lim _{j\rightarrow \infty }T^{(i_1,i_2,\xi _j(a_k),i_3)}(\xi _j(x),\xi _j(w),\xi _j(y))\\\ge & {} \lim _{j\rightarrow \infty }T^{{\mathbf {i}}}(\xi _j(x),\xi _j(w),\xi _j(y))\\\ge & {} \lim _{k\rightarrow \infty }\lim _{j\rightarrow \infty }T^{(i_1,i_2,\xi _j(b_k),i_3)}(\xi _j(x),\xi _j(w),\xi _j(y))\\= & {} \lim _{k\rightarrow \infty }T^{(i_1,i_2,\xi _0(b_k),i_3)}(\xi _0(x),\xi _0(w),\xi _0(y))\\= & {} T^{{\mathbf {i}}}(\xi _0(x),\xi _0(w),\xi _0(y)). \end{aligned}$$

This proves (2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wienhard, A. & Zhang, T. Flows on the \(\mathbf{PGL(V)}\)-Hitchin Component. Geom. Funct. Anal. 30, 588–692 (2020). https://doi.org/10.1007/s00039-020-00534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-020-00534-4

Navigation