Skip to main content

Advertisement

Log in

MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Proverbs-Singh, T., Feldman, J. L., Morris, M. J., Autio, K. A., & Traina, T. A. (2015). Targeting the androgen receptor in prostate and breast cancer: Several new agents in development. Endocrine-Related Cancer, 22(3), R87–R106. https://doi.org/10.1530/ERC-14-0543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Zijl, F., Krupitza, G., & Mikulits, W. (2011). Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research, 728(1–2), 23–34. https://doi.org/10.1016/j.mrrev.2011.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43–73. https://doi.org/10.1615/critrevoncog.v18.i1-2.40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holloway, C. M., Easson, A., Escallon, J., Leong, W. L., Quan, M. L., Reedjik, M., et al. (2010). Technology as a force for improved diagnosis and treatment of breast disease. Canadian Journal of Surgery, 53(4), 268–277.

    PubMed Central  Google Scholar 

  5. Castella, M., Fernandez de Larrea, C., & Martin-Antonio, B. (2018). Immunotherapy: A novel era of promising treatments for multiple myeloma. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113613.

  6. Yan, Y., Kumar, A. B., Finnes, H., Markovic, S. N., Park, S., Dronca, R. S., & Dong, H. (2018). Combining immune checkpoint inhibitors with conventional Cancer therapy. Frontiers in Immunology, 9, 1739. https://doi.org/10.3389/fimmu.2018.01739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clavel, J. (2007). Progress in the epidemiological understanding of gene-environment interactions in major diseases: Cancer. Comptes Rendus Biologies, 330(4), 306–317. https://doi.org/10.1016/j.crvi.2007.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, H., Su, Z. Z., Lin, J. J., Goldstein, N. I., Young, C. S., & Fisher, P. B. (1996). The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proceedings of the National Academy of Sciences of the United States of America, 93(17), 9160–9165. https://doi.org/10.1073/pnas.93.17.9160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang, D. C., Gopalkrishnan, R. V., Wu, Q., Jankowsky, E., Pyle, A. M., & Fisher, P. B. (2002). mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 637–642. https://doi.org/10.1073/pnas.022637199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, X., Wang, H., Li, X., Guo, C., Yuan, F., Fisher, P. B., & Wang, X. Y. (2016). Activation of the MDA-5-IPS-1 viral sensing pathway induces cancer cell death and type I IFN-dependent antitumor immunity. Cancer Research, 76(8), 2166–2176. https://doi.org/10.1158/0008-5472.CAN-15-2142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shamloo, B., & Usluer, S. (2019). p21 in cancer research. Cancers (Basel), 11(8). https://doi.org/10.3390/cancers11081178.

  12. Freemerman, A. J., Vrana, J. A., Tombes, R. M., Jiang, H., Chellappan, S. P., Fisher, P. B., & Grant, S. (1997). Effects of antisense p21 (WAF1/CIP1/MDA6) expression on the induction of differentiation and drug-mediated apoptosis in human myeloid leukemia cells (HL-60). Leukemia, 11(4), 504–513. https://doi.org/10.1038/sj.leu.2400625.

    Article  CAS  PubMed  Google Scholar 

  13. Menezes, M. E., Bhatia, S., Bhoopathi, P., Das, S. K., Emdad, L., Dasgupta, S., et al. (2014). MDA-7/IL-24: Multifunctional cancer killing cytokine. Advances in Experimental Medicine and Biology, 818, 127–153. https://doi.org/10.1007/978-1-4471-6458-6_6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Menezes, M. E., Bhoopathi, P., Pradhan, A. K., Emdad, L., Das, S. K., Guo, C., et al. (2018). Role of MDA-7/IL-24 a multifunction protein in human diseases. Advances in Cancer Research, 138, 143–182. https://doi.org/10.1016/bs.acr.2018.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pradhan, A. K., Bhoopathi, P., Talukdar, S., Scheunemann, D., Sarkar, D., Cavenee, W. K., Das, S. K., Emdad, L., & Fisher, P. B. (2019). MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 5687–5692. https://doi.org/10.1073/pnas.1819869116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pradhan, A. K., Talukdar, S., Bhoopathi, P., Shen, X. N., Emdad, L., Das, S. K., Sarkar, D., & Fisher, P. B. (2017). Mda-7/IL-24 mediates cancer cell-specific death via regulation of miR-221 and the beclin-1 axis. Cancer Research, 77(4), 949–959. https://doi.org/10.1158/0008-5472.CAN-16-1731.

    Article  CAS  PubMed  Google Scholar 

  17. Das, S. K., Sarkar, D., Emdad, L., & Fisher, P. B. (2019). MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Advances in Cancer Research, 144, 137–191. https://doi.org/10.1016/bs.acr.2019.03.011.

    Article  CAS  PubMed  Google Scholar 

  18. Kang, B. S., Cooper, D. R., Devedjiev, Y., Derewenda, U., & Derewenda, Z. S. (2003). Molecular roots of degenerate specificity in syntenin’s PDZ2 domain: Reassessment of the PDZ recognition paradigm. Structure, 11(7), 845–853. https://doi.org/10.1016/s0969-2126(03)00125-4.

    Article  CAS  PubMed  Google Scholar 

  19. Kang, B. S., Cooper, D. R., Jelen, F., Devedjiev, Y., Derewenda, U., Dauter, Z., Otlewski, J., & Derewenda, Z. S. (2003). PDZ tandem of human syntenin: Crystal structure and functional properties. Structure, 11(4), 459–468. https://doi.org/10.1016/s0969-2126(03)00052-2.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H. J., & Zheng, J. J. (2010). PDZ domains and their binding partners: Structure, specificity, and modification. Cell Communication and Signaling: CCS, 8, 8. https://doi.org/10.1186/1478-811X-8-8.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, F., Adelman, J., Jiang, H., Goldstein, N. I., & Fisher, P. B. (1999). Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 18(23), 3546–3552. https://doi.org/10.1038/sj.onc.1202715.

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J. J., Jiang, H., & Fisher, P. B. (1998). Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene, 207(2), 105–110. https://doi.org/10.1016/s0378-1119(97)00562-3.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, F., Adelman, J., Jiang, H., Goldstein, N. I., & Fisher, P. B. (1999). Differentiation induction subtraction hybridization (DISH): A strategy for cloning genes displaying differential expression during growth arrest and terminal differentiation. Gene, 236(1), 125–131. https://doi.org/10.1016/s0378-1119(99)00244-9.

    Article  CAS  PubMed  Google Scholar 

  24. Kegelman, T. P., Das, S. K., Emdad, L., Hu, B., Menezes, M. E., Bhoopathi, P., Wang, X. Y., Pellecchia, M., Sarkar, D., & Fisher, P. B. (2015). Targeting tumor invasion: The roles of MDA-9/Syntenin. Expert Opinion on Therapeutic Targets, 19(1), 97–112. https://doi.org/10.1517/14728222.2014.959495.

    Article  CAS  PubMed  Google Scholar 

  25. Das, S. K., Pradhan, A. K., Bhoopathi, P., Talukdar, S., Shen, X. N., Sarkar, D., Emdad, L., & Fisher, P. B. (2018). The MDA-9/Syntenin/IGF1R/STAT3 axis directs prostate cancer invasion. Cancer Research, 78(11), 2852–2863. https://doi.org/10.1158/0008-5472.CAN-17-2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, Y., Li, S., Wang, K., & Wan, X. (2019). A PDZ protein MDA-9/Syntenin: As a target for cancer therapy. Computational and Structural Biotechnology Journal, 17, 136–141. https://doi.org/10.1016/j.csbj.2019.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarkar, D., Boukerche, H., Su, Z. Z., & Fisher, P. B. (2008). mda-9/Syntenin: More than just a simple adapter protein when it comes to cancer metastasis. Cancer Research, 68(9), 3087–3093. https://doi.org/10.1158/0008-5472.CAN-07-6210.

    Article  CAS  PubMed  Google Scholar 

  28. Das, S. K., Bhutia, S. K., Kegelman, T. P., Peachy, L., Oyesanya, R. A., Dasgupta, S., et al. (2012). MDA-9/syntenin: A positive gatekeeper of melanoma metastasis. Front Biosci (Landmark Ed), 17, 1–15. https://doi.org/10.2741/3911.

    Article  CAS  Google Scholar 

  29. Bacolod, M. D., Das, S. K., Sokhi, U. K., Bradley, S., Fenstermacher, D. A., Pellecchia, M., et al. (2015). Examination of epigenetic and other molecular factors associated with mda-9/Syntenin dysregulation in cancer through integrated analyses of public genomic datasets. Advances in Cancer Research, 127, 49–121. https://doi.org/10.1016/bs.acr.2015.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menezes, M. E., Shen, X. N., Das, S. K., Emdad, L., Sarkar, D., & Fisher, P. B. (2016). MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor beta1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget, 7(49), 80175–80189. https://doi.org/10.18632/oncotarget.13373.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Das, S. K., Kegelman, T. P., Pradhan, A. K., Shen, X. N., Bhoopathi, P., Talukdar, S., Maji, S., Sarkar, D., Emdad, L., & Fisher, P. B. (2019). Suppression of prostate cancer pathogenesis using an MDA-9/Syntenin (SDCBP) PDZ1 small-molecule inhibitor. Molecular Cancer Therapeutics, 18(11), 1997–2007. https://doi.org/10.1158/1535-7163.MCT-18-1019.

    Article  CAS  PubMed  Google Scholar 

  32. Boukerche, H., Su, Z. Z., Emdad, L., Baril, P., Balme, B., Thomas, L., Randolph, A., Valerie, K., Sarkar, D., & Fisher, P. B. (2005). mda-9/Syntenin: A positive regulator of melanoma metastasis. Cancer Research, 65(23), 10901–10911. https://doi.org/10.1158/0008-5472.CAN-05-1614.

    Article  CAS  PubMed  Google Scholar 

  33. Boukerche, H., Su, Z. Z., Emdad, L., Sarkar, D., & Fisher, P. B. (2007). mda-9/Syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-kappaB. Cancer Research, 67(4), 1812–1822. https://doi.org/10.1158/0008-5472.CAN-06-3875.

    Article  CAS  PubMed  Google Scholar 

  34. Boukerche, H., Su, Z. Z., Prevot, C., Sarkar, D., & Fisher, P. B. (2008). mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15914–15919. https://doi.org/10.1073/pnas.0808171105.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Das, S. K., Bhutia, S. K., Sokhi, U. K., Azab, B., Su, Z. Z., Boukerche, H., Anwar, T., Moen, E. L., Chatterjee, D., Pellecchia, M., Sarkar, D., & Fisher, P. B. (2012). Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma. Cancer Research, 72(23), 6217–6226. https://doi.org/10.1158/0008-5472.CAN-12-0402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Talukdar, S., Pradhan, A. K., Bhoopathi, P., Shen, X. N., August, L. A., Windle, J. J., Sarkar, D., Furnari, F. B., Cavenee, W. K., Das, S. K., Emdad, L., & Fisher, P. B. (2018). Regulation of protective autophagy in anoikis-resistant glioma stem cells by SDCBP/MDA-9/Syntenin. Autophagy, 14(10), 1845–1846. https://doi.org/10.1080/15548627.2018.1502564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Talukdar, S., Pradhan, A. K., Bhoopathi, P., Shen, X. N., August, L. A., Windle, J. J., Sarkar, D., Furnari, F. B., Cavenee, W. K., Das, S. K., Emdad, L., & Fisher, P. B. (2018). MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 115(22), 5768–5773. https://doi.org/10.1073/pnas.1721650115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das, S. K., Sarkar, D., Cavenee, W. K., Emdad, L., & Fisher, P. B. (2019). Rethinking glioblastoma therapy: MDA-9/Syntenin targeted small molecule. ACS Chemical Neuroscience, 10(3), 1121–1123. https://doi.org/10.1021/acschemneuro.9b00016.

    Article  CAS  PubMed  Google Scholar 

  39. Kegelman, T. P., Wu, B., Das, S. K., Talukdar, S., Beckta, J. M., Hu, B., Emdad, L., Valerie, K., Sarkar, D., Furnari, F. B., Cavenee, W. K., Wei, J., Purves, A., de, S. K., Pellecchia, M., & Fisher, P. B. (2017). Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 370–375. https://doi.org/10.1073/pnas.1616100114.

    Article  CAS  PubMed  Google Scholar 

  40. Oyesanya, R. A., Bhatia, S., Menezes, M. E., Dumur, C. I., Singh, K. P., Bae, S., et al. (2014). MDA-9/Syntenin regulates differentiation and angiogenesis programs in head and neck squamous cell carcinoma. Oncoscience, 1(11), 725–737. https://doi.org/10.18632/oncoscience.99.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koo, T. H., Lee, J. J., Kim, E. M., Kim, K. W., Kim, H. D., & Lee, J. H. (2002). Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene, 21(26), 4080–4088. https://doi.org/10.1038/sj.onc.1205514.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X., Zhang, X., Lv, Y., Xiang, J., & Shi, J. (2014). Overexpression of syntenin enhances hepatoma cell proliferation and invasion: Potential roles in human hepatoma. Oncology Reports, 32(6), 2810–2816. https://doi.org/10.3892/or.2014.3498.

    Article  CAS  PubMed  Google Scholar 

  43. Dasgupta, S., Menezes, M. E., Das, S. K., Emdad, L., Janjic, A., Bhatia, S., Mukhopadhyay, N. D., Shao, C., Sarkar, D., & Fisher, P. B. (2013). Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clinical Cancer Research, 19(17), 4621–4633. https://doi.org/10.1158/1078-0432.CCR-13-0585.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, W. Y., Jang, J. Y., Jeon, Y. K., Chung, D. H., Kim, Y. G., & Kim, C. W. (2014). Syntenin increases the invasiveness of small cell lung cancer cells by activating p38, AKT, focal adhesion kinase and SP1. Experimental & Molecular Medicine, 46, e90. https://doi.org/10.1038/emm.2014.1.

    Article  CAS  Google Scholar 

  45. Gangemi, R., Mirisola, V., Barisione, G., Fabbi, M., Brizzolara, A., Lanza, F., Mosci, C., Salvi, S., Gualco, M., Truini, M., Angelini, G., Boccardo, S., Cilli, M., Airoldi, I., Queirolo, P., Jager, M. J., Daga, A., Pfeffer, U., & Ferrini, S. (2012). Mda-9/syntenin is expressed in uveal melanoma and correlates with metastatic progression. PLoS One, 7(1), e29989. https://doi.org/10.1371/journal.pone.0029989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grootjans, J. J., Zimmermann, P., Reekmans, G., Smets, A., Degeest, G., Durr, J., & David, G. (1997). Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13683–13688. https://doi.org/10.1073/pnas.94.25.13683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirbec, H., Martin, S., & Henley, J. M. (2005). Syntenin is involved in the developmental regulation of neuronal membrane architecture. Molecular and Cellular Neurosciences, 28(4), 737–746. https://doi.org/10.1016/j.mcn.2004.12.005.

    Article  CAS  PubMed  Google Scholar 

  48. Bhoopathi, P., Pradhan, A. K., Bacolod, M. D., Emdad, L., Sarkar, D., Das, S. K., & Fisher, P. B. (2019). Regulation of neuroblastoma migration, invasion, and in vivo metastasis by genetic and pharmacological manipulation of MDA-9/Syntenin. Oncogene, 38(41), 6781–6793. https://doi.org/10.1038/s41388-019-0920-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boukerche, H., Aissaoui, H., Prevost, C., Hirbec, H., Das, S. K., Su, Z. Z., et al. (2010). Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappaB. Oncogene, 29(21), 3054–3066. https://doi.org/10.1038/onc.2010.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C. B., Bouchet, J., Vitale, N., Slavík, J., Machala, M., & Zimmermann, P. (2014). Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 5, 3477. https://doi.org/10.1038/ncomms4477.

    Article  CAS  PubMed  Google Scholar 

  51. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., & David, G. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature Cell Biology, 14(7), 677–685. https://doi.org/10.1038/ncb2502.

    Article  CAS  PubMed  Google Scholar 

  52. Hurley, J. H., & Odorizzi, G. (2012). Get on the exosome bus with ALIX. Nature Cell Biology, 14(7), 654–655. https://doi.org/10.1038/ncb2530.

    Article  CAS  PubMed  Google Scholar 

  53. Fisher, P. B., Prignoli, D. R., Hermo Jr., H., Weinstein, I. B., & Pestka, S. (1985). Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. Journal of Interferon Research, 5(1), 11–22. https://doi.org/10.1089/jir.1985.5.11.

    Article  CAS  PubMed  Google Scholar 

  54. Pradhan, A. K., Emdad, L., Das, S. K., Sarkar, D., & Fisher, P. B. (2017). The enigma of miRNA regulation in cancer. Advances in Cancer Research, 135, 25–52. https://doi.org/10.1016/bs.acr.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

  55. Jana, S., Sengupta, S., Biswas, S., Chatterjee, A., Roy, H., & Bhattacharyya, A. (2017). miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP. Biochemical and Biophysical Research Communications, 482(1), 126–133. https://doi.org/10.1016/j.bbrc.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  56. Tian, W., Wu, W., Li, X., Rui, X., & Wu, Y. (2019). MiRNA-139-3p inhibits the proliferation, invasion, and migration of human glioma cells by targeting MDA-9/syntenin. Biochemical and Biophysical Research Communications, 508(1), 295–301. https://doi.org/10.1016/j.bbrc.2018.11.144.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Ramirez, M. A., Wu, D., Pryce, G., Simpson, J. E., Reijerkerk, A., King-Robson, J., Kay, O., Vries, H. E., Hirst, M. C., Sharrack, B., Baker, D., Male, D. K., Michael, G. J., & Romero, I. A. (2014). MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. The FASEB Journal, 28(6), 2551–2565. https://doi.org/10.1096/fj.13-248880.

    Article  CAS  PubMed  Google Scholar 

  58. Hwangbo, C., Kim, J., Lee, J. J., & Lee, J. H. (2010). Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Research, 70(4), 1645–1655. https://doi.org/10.1158/0008-5472.CAN-09-2447.

    Article  CAS  PubMed  Google Scholar 

  59. Sandru, A., Voinea, S., Panaitescu, E., & Blidaru, A. (2014). Survival rates of patients with metastatic malignant melanoma. Journal of Medicine and Life, 7(4), 572–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Weiss, S. A., Wolchok, J. D., & Sznol, M. (2019). Immunotherapy of melanoma: Facts and hopes. Clinical Cancer Research, 25(17), 5191–5201. https://doi.org/10.1158/1078-0432.CCR-18-1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y., & Sheikh, M. S. (2014). Melanoma: Molecular pathogenesis and therapeutic management. Molecular and Cellular Pharmacology, 6(3), 228.

    PubMed  PubMed Central  Google Scholar 

  62. Guan, M., Chen, X., Ma, Y., Tang, L., Guan, L., Ren, X., Yu, B., Zhang, W., & Su, B. (2015). MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biology, 36(4), 2973–2982. https://doi.org/10.1007/s13277-014-2930-9.

    Article  CAS  PubMed  Google Scholar 

  63. Das, S. K., Guo, C., Pradhan, A. K., Bhoopathi, P., Talukdar, S., Shen, X. N., et al. (2016). Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget, 7(30), 46848–46861. https://doi.org/10.18632/oncotarget.10040.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Helmke, B. M., Polychronidis, M., Benner, A., Thome, M., Arribas, J., & Deichmann, M. (2004). Melanoma metastasis is associated with enhanced expression of the syntenin gene. Oncology Reports, 12(2), 221–228.

    CAS  PubMed  Google Scholar 

  65. Qian, X. L., Li, Y. Q., Yu, B., Gu, F., Liu, F. F., Li, W. D., Zhang, X. M., & Fu, L. (2013). Syndecan binding protein (SDCBP) is overexpressed in estrogen receptor negative breast cancers, and is a potential promoter for tumor proliferation. PLoS One, 8(3), e60046. https://doi.org/10.1371/journal.pone.0060046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: Biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10(1), 9–22. https://doi.org/10.1038/nrc2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, Y., Hong, Q., Shi, P., Liu, Z., Luo, J., & Shao, Z. (2013). Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Breast Cancer Research, 15(3), R50. https://doi.org/10.1186/bcr3442.

    Article  CAS  PubMed  Google Scholar 

  68. Demedts, I. K., Vermaelen, K. Y., & van Meerbeeck, J. P. (2010). Treatment of extensive-stage small cell lung carcinoma: Current status and future prospects. The European Respiratory Journal, 35(1), 202–215. https://doi.org/10.1183/09031936.00105009.

    Article  CAS  PubMed  Google Scholar 

  69. Madu, C. O., & Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. Journal of Cancer, 1, 150–177. https://doi.org/10.7150/jca.1.150.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mitchell, T. J., & John, S. (2005). Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 114(3), 301–312. https://doi.org/10.1111/j.1365-2567.2005.02091.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamran, M. Z., Patil, P., & Gude, R. P. (2013). Role of STAT3 in cancer metastasis and translational advances. BioMed Research International, 2013, 421821–421815. https://doi.org/10.1155/2013/421821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Gupta, S. R., Tharakan, S. T., Koca, C., Dey, S., & Sung, B. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Annals of the New York Academy of Sciences, 1171, 59–76. https://doi.org/10.1111/j.1749-6632.2009.04911.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsai, Y. T., Su, Y. H., Fang, S. S., Huang, T. N., Qiu, Y., Jou, Y. S., Shih, H. M., Kung, H. J., & Chen, R. H. (2000). Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Molecular and Cellular Biology, 20(6), 2043–2054. https://doi.org/10.1128/mcb.20.6.2043-2054.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xie, T. X., Wei, D., Liu, M., Gao, A. C., Ali-Osman, F., Sawaya, R., & Huang, S. (2004). Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene, 23(20), 3550–3560. https://doi.org/10.1038/sj.onc.1207383.

    Article  CAS  PubMed  Google Scholar 

  75. Cacalano, N. A. (2016). Regulation of natural killer cell function by STAT3. Frontiers in Immunology, 7, 128. https://doi.org/10.3389/fimmu.2016.00128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-kappaB signaling in inflammation. Signal Transduction and Targeted Therapy, 2. https://doi.org/10.1038/sigtrans.2017.23.

  77. Vlahopoulos, S. A. (2017). Aberrant control of NF-kappaB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: Molecular mode. Cancer Biology & Medicine, 14(3), 254–270. https://doi.org/10.20892/j.issn.2095-3941.2017.0029.

    Article  CAS  Google Scholar 

  78. Huxford, T., & Ghosh, G. (2009). A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harbor Perspectives in Biology, 1(3), a000075. https://doi.org/10.1101/cshperspect.a000075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gialeli, C., Theocharis, A. D., & Karamanos, N. K. (2011). Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS Journal, 278(1), 16–27. https://doi.org/10.1111/j.1742-4658.2010.07919.x.

    Article  CAS  PubMed  Google Scholar 

  80. Foss, A., Munoz-Sagredo, L., Sleeman, J., & Thiele, W. (2019). The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells. Clinical & Experimental Metastasis, 37, 47–67. https://doi.org/10.1007/s10585-019-10009-y.

    Article  Google Scholar 

  81. Wu, M., Wang, G., Hu, W., Yao, Y., & Yu, X. F. (2019). Emerging roles and therapeutic value of exosomes in cancer metastasis. Molecular Cancer, 18(1), 53. https://doi.org/10.1186/s12943-019-0964-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: Biogenesis, biologic function and clinical potential. Cell & Bioscience, 9, 19. https://doi.org/10.1186/s13578-019-0282-2.

    Article  Google Scholar 

  83. Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., Zhang, Z., Xu, J., Xia, K., Chang, Y., Liu, J., & Yuan, W. (2018). Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Molecular Cancer, 17(1), 82. https://doi.org/10.1186/s12943-018-0831-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Imjeti, N. S., Menck, K., Egea-Jimenez, A. L., Lecointre, C., Lembo, F., Bouguenina, H., Badache, A., Ghossoub, R., David, G., Roche, S., & Zimmermann, P. (2017). Syntenin mediates SRC function in exosomal cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 12495–12500. https://doi.org/10.1073/pnas.1713433114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xiao, D., Ohlendorf, J., Chen, Y., Taylor, D. D., Rai, S. N., Waigel, S., Zacharias, W., Hao, H., & McMasters, K. M. (2012). Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One, 7(10), e46874. https://doi.org/10.1371/journal.pone.0046874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McAndrews, K. M., & Kalluri, R. (2019). Mechanisms associated with biogenesis of exosomes in cancer. Molecular Cancer, 18(1), 52. https://doi.org/10.1186/s12943-019-0963-9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ju, R., Zhuang, Z. W., Zhang, J., Lanahan, A. A., Kyriakides, T., Sessa, W. C., & Simons, M. (2014). Angiopoietin-2 secretion by endothelial cell exosomes: Regulation by the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways. The Journal of Biological Chemistry, 289(1), 510–519. https://doi.org/10.1074/jbc.M113.506899.

    Article  CAS  PubMed  Google Scholar 

  88. Mittal, V. (2018). Epithelial mesenchymal transition in tumor metastasis. Annual Review of Pathology, 13, 395–412. https://doi.org/10.1146/annurev-pathol-020117-043854.

    Article  CAS  PubMed  Google Scholar 

  89. Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172. https://doi.org/10.1038/cr.2009.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. E. (2017). Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harbor Perspectives in Biology, 9(2). https://doi.org/10.1101/cshperspect.a022129.

  91. Wang, L. K., Pan, S. H., Chang, Y. L., Hung, P. F., Kao, S. H., Wang, W. L., et al. (2016). MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma. Oncotarget, 7(1), 386–401. https://doi.org/10.18632/oncotarget.6299.

    Article  PubMed  Google Scholar 

  92. Zetter, B. R. (1998). Angiogenesis and tumor metastasis. Annual Review of Medicine, 49, 407–424. https://doi.org/10.1146/annurev.med.49.1.407.

    Article  CAS  PubMed  Google Scholar 

  93. Giavazzi, R., Sennino, B., Coltrini, D., Garofalo, A., Dossi, R., Ronca, R., Tosatti, M. P. M., & Presta, M. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. The American Journal of Pathology, 162(6), 1913–1926. https://doi.org/10.1016/S0002-9440(10)64325-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Akl, M. R., Nagpal, P., Ayoub, N. M., Tai, B., Prabhu, S. A., Capac, C. M., et al. (2016). Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget, 7(28), 44735–44762. https://doi.org/10.18632/oncotarget.8203.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. El-Kenawi, A. E., & El-Remessy, A. B. (2013). Angiogenesis inhibitors in cancer therapy: Mechanistic perspective on classification and treatment rationales. British Journal of Pharmacology, 170(4), 712–729. https://doi.org/10.1111/bph.12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Das, S. K., Bhutia, S. K., Azab, B., Kegelman, T. P., Peachy, L., Santhekadur, P. K., Dasgupta, S., Dash, R., Dent, P., Grant, S., Emdad, L., Pellecchia, M., Sarkar, D., & Fisher, P. B. (2013). MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma. Cancer Research, 73(2), 844–854. https://doi.org/10.1158/0008-5472.CAN-12-1681.

    Article  CAS  PubMed  Google Scholar 

  98. Talukdar, S., Das, S. K., Pradhan, A. K., Emdad, L., Windle, J. J., Sarkar, D., & Fisher, P. B. (2019). MDA-9/Syntenin (SDCBP) is a critical regulator of chemoresistance, survival and stemness in prostate cancer stem cells. Cancers (Basel), 12(1). https://doi.org/10.3390/cancers12010053.

  99. Mbeunkui, F., & Johann Jr., D. J. (2009). Cancer and the tumor microenvironment: A review of an essential relationship. Cancer Chemotherapy and Pharmacology, 63(4), 571–582. https://doi.org/10.1007/s00280-008-0881-9.

    Article  PubMed  Google Scholar 

  100. Das, S. K., Maji, S., Wechman, S. L., Bhoopathi, P., Pradhan, A. K., Talukdar, S., Sarkar, D., Landry, J., Guo, C., Wang, X. Y., Cavenee, W. K., Emdad, L., & Fisher, P. B. (2020). MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacological Research, 155, 104695. https://doi.org/10.1016/j.phrs.2020.104695.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We thank the members of the Fisher and Sarkar laboratories for their contributions to our understanding of MDA-9/Syntenin-1/SDCBP that serve as a basis for this review. The present studies were supported in part by NCI R01 CA244993 (DS and PBF), the National Foundation for Cancer Research (NFCR) (PBF), and a sponsored research agreement from InVaMet Therapeutics, Inc. (IVMT) (SKD). DS is the Harrison Foundation Distinguished Professor in Cancer Research. PBF holds the Thelma Newmeyer Corman Chair in Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Fisher.

Ethics declarations

Conflict of interest

PBF is co-founder, CEO, and has an ownership interest in InVaMet Therapeutics, Inc. (IVMT). VCU and the Sanford Burnham Prebys Medical Discovery Institute also have an equity interest in IVMT. SD is recipient of a Sponsored Research Agreement between VCU and IVMT.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, A.K., Maji, S., Das, S.K. et al. MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer Metastasis Rev 39, 769–781 (2020). https://doi.org/10.1007/s10555-020-09886-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09886-7

Keywords

Navigation