Issue 7, 2020

Substrate strain engineering: an efficient strategy to enhance the catalytic activity of SACs on waved graphene for e-NRR

Abstract

Ammonia is an important chemical in both industry and agriculture. The production of ammonia in a green way is challenging. The electrochemical nitrogen reduction reaction (e-NRR) has been proposed for this purpose. However, this technology is still far from practical applications due to low production, which is mainly because of inefficient electrocatalysts. In this work, we have designed a series of single-atom catalysts (SACs) anchored on waved graphene (wG) for efficient e-NRR and systematically investigated the effect of curvature on the catalytic performance based on first-principles calculations. Eight SACs (V, Cr, Mn, Fe, Co, Ni, Cu, and Pt) anchored on waved graphene with various curvatures (0–50%) have been studied. We found that the curvature strongly affected the formation, catalytic activity, and selectivity of SACs for e-NRR: (1) the formation possibility of SACs on wG was considerably enhanced on increasing the curvature. (2) The free energies for the rate-determining steps of SAC-V-wG, SAC-Mn-wG, and SAC-Cr-wG were less than 1.0 eV, leading to high catalytic activity for e-NRR. In particular, SAC-Mn-wG exhibited higher activity for e-NRR than SAC-Mn on flat graphene. (3) The three systems had higher selectivity for e-NRR than for HER, which could be further improved by compression. Thus, we conclude that SAC-Mn-wG is the best SAC on wG for e-NRR because of its easy fabrication, good catalytic performance and high selectivity. We believe that our findings can provide new insights in reported experimental results and guidance for the design of novel SACs with high performance for e-NRR.

Graphical abstract: Substrate strain engineering: an efficient strategy to enhance the catalytic activity of SACs on waved graphene for e-NRR

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2020
Accepted
14 May 2020
First published
14 May 2020

Sustainable Energy Fuels, 2020,4, 3773-3779

Substrate strain engineering: an efficient strategy to enhance the catalytic activity of SACs on waved graphene for e-NRR

D. Liu, H. Ai, W. T. Lou, F. Li, K. H. Lo, S. Wang and H. Pan, Sustainable Energy Fuels, 2020, 4, 3773 DOI: 10.1039/D0SE00518E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements