Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Star formation in galaxies as traced by the Spitzer Space Telescope

The Spitzer Space Telescope returned infrared images and spectra with unprecedented sensitivity and resolution, enabling the characterization of the dust-enshrouded star formation of and within galaxies. This has yielded indicators of total star formation, used as unbiased tracers of the stellar production across cosmic times.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SFR–stellar mass relation of local galaxies and Spitzer/Infrared Spectrograph (IRS) spectra of two local star-forming galaxies.

References

  1. Smith, D. J. B. et al. Mon. Not. R. Astron. Soc. 427, 703–727 (2012).

    Article  ADS  Google Scholar 

  2. Kennicutt, R. C. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article  ADS  Google Scholar 

  3. Kennicutt, R. C. & Evans, N. J. Annu. Rev. Astron. Astrophys. 50, 531 (2012).

    Article  ADS  Google Scholar 

  4. Wang, B. & Heckman, T. M. Astrophys. J. 457, 645–657 (1996).

    Article  ADS  Google Scholar 

  5. Calzetti, D. Publ. Astron. Soc. Pacif. 113, 1449–1485 (2001).

    Article  ADS  Google Scholar 

  6. Sanders, D. B. & Mirabel, I. F. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996).

    Article  ADS  Google Scholar 

  7. Armus, L., Charmandaris, V. & Soifer, B. T. Nat. Astron. https://doi.org/10.1038/s41550-020-1106-3 (2020).

  8. Kroupa, P. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  9. Dale, D. A. et al. Astrophys. J. 745, 95 (2012).

    Article  ADS  Google Scholar 

  10. Calzetti, D. et al. Astrophys. J. 714, 1256–1279 (2010).

    Article  ADS  Google Scholar 

  11. Magnelli, B. et al. Astron. Astrophys. 561, A86 (2014).

    Article  Google Scholar 

  12. Rieke, G. H. et al. Astrophys. J. 692, 556–573 (2009).

    Article  ADS  Google Scholar 

  13. Whitaker, K. E. et al. Astrophys. J. 850, 208 (2017).

    Article  ADS  Google Scholar 

  14. Murphy, E. J. et al. Astrophys. J. 732, 126 (2011).

    Article  ADS  Google Scholar 

  15. Madau, P. & Dickinson, M. E. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  16. Casey, C. M. et al. Astrophys. J. 862, 77 (2018).

    Article  ADS  Google Scholar 

  17. Reddy, N. A. et al. Astrophys. J. 644, 792–812 (2006).

    Article  ADS  Google Scholar 

  18. Elbaz, D. et al. Astron. Astrophys. 533, A119 (2011).

    Article  Google Scholar 

  19. Reddy, N., Erb, D. K., Pettini, M., Steidel, C. C. & Shapley, A. E. Astrophys. J. 712, 1070–1091 (2010).

    Article  ADS  Google Scholar 

  20. Battisti, A. J., Calzetti, D., Johnson, B. D. & Elbaz, D. Astrophys. J. 800, 143 (2015).

    Article  ADS  Google Scholar 

  21. Shipley, H. V., Papovich, C., Rieke, G. H., Brown, M. J. I. & Moustakas, J. Astrophys. J. 818, 60 (2016).

    Article  ADS  Google Scholar 

  22. Li, Y. et al. Astrophys. J. 768, 180 (2013).

    Article  ADS  Google Scholar 

  23. Boquien, M. et al. Astron. Astrophys. 591, A6 (2016).

    Article  Google Scholar 

  24. Li, A. Nat. Astron. https://doi.org/10.1038/s41550-020-1051-1 (2020).

  25. Draine, B. T. et al. Astrophys. J. 663, 866–894 (2007).

    Article  ADS  Google Scholar 

  26. Smith, J. D. T. et al. Astrophys. J. 656, 770–791 (2007).

    Article  ADS  Google Scholar 

  27. Binder, B. A. & Povich, M. S. Astrophys. J. 864, 136 (2018).

    Article  ADS  Google Scholar 

  28. Povich, M. S. et al. Astrophys. J. 660, 346–362 (2007).

    Article  ADS  Google Scholar 

  29. Bendo, G. J. et al. Mon. Not. R. Astron. Soc. 389, 629–650 (2008).

    Article  ADS  Google Scholar 

  30. Relano, M. & Kennicutt, R. C. Astrophys. J. 699, 1125–1143 (2009).

    Article  ADS  Google Scholar 

  31. Crocker, A. F. et al. Astrophys. J. 762, 79 (2013).

    Article  ADS  Google Scholar 

  32. Calapa, M. D. et al. Astrophys. J. 784, 130 (2014).

    Article  ADS  Google Scholar 

  33. Engelbracht, C. W. et al. Astrophys. J. 678, 804–827 (2008).

    Article  ADS  Google Scholar 

  34. Aniano, G. et al. Astrophys. J. 889, 150 (2020).

    Article  ADS  Google Scholar 

  35. Calzetti, D. et al. Astrophys. J. 666, 870–895 (2007).

    Article  ADS  Google Scholar 

  36. Dale, D. A. et al. Astrophys. J. 703, 517–556 (2009).

    Article  ADS  Google Scholar 

  37. Kennicutt, R. C. et al. Astrophys. J. 703, 1672–1695 (2009).

    Article  ADS  Google Scholar 

  38. Hao, C.-N. et al. Astrophys. J. 741, 124 (2011).

    Article  ADS  Google Scholar 

  39. Liu, G., Koda, J., Calzetti, D., Fukuhara, M. & Momose, R. Astrophys. J. 735, 63 (2011).

    Article  ADS  Google Scholar 

  40. Calzetti, D. in Secular Evolution of Galaxies (eds Falcón-Barroso, J. & Knapen, J. H.) 419–458 (Cambridge Univ. Press, 2013).

  41. Cook, D. O. et al. Mon. Not. R. Astron. Soc. 445, 899–912 (2014).

    Article  ADS  Google Scholar 

  42. Whitaker, K. E., van Dokkum, P. G., Brammer, G. & Franx, M. Astrophys. J. 754, L29 (2012).

    Article  ADS  Google Scholar 

  43. Salmon, B. et al. Astrophys. J. 799, 183 (2015).

    Article  ADS  Google Scholar 

  44. Saintonge, A. et al. Mon. Not. R. Astron. Soc. 462, 1749–1756 (2016).

    Article  ADS  Google Scholar 

  45. Genzel, R. et al. Astrophys. J. 800, 20 (2015).

    Article  ADS  Google Scholar 

  46. Draine, B. T. & Li, A. Astrophys. J. 657, 810–837 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Calzetti.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Editor’s Note: This article has been peer reviewed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calzetti, D. Star formation in galaxies as traced by the Spitzer Space Telescope. Nat Astron 4, 437–439 (2020). https://doi.org/10.1038/s41550-020-1052-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1052-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing