Skip to main content
Log in

Damage evolution of PµLSE additive-manufactured micro-lattice metastructures: Synchrotron radiation 3D tomography image-based analysis

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The manufacturing of additives with projection micro litho stereo exposure (PµLSE) has provided an opportunity for the fabrication of metastructures with complex microstructures at micro-nano resolutions. However, the performance evaluation of as-fabricated metastructures is challenging. The benefit of synchrotron radiation-based 3D imaging techniques and advanced image processing methods makes it is feasible to study fabrication defects and damage processes of micro-nanoscale body-centered cubic (BCC) lattices manufactured with PµLSE. First, synchrotron radiation technology is used to capture the structural features inside the micro-lattice samples. Subsequently, several types of statistical defects-based image finite element models are adopted to analyze the failure process of the structure under compression loading. Finally, comparisons between in situ experiments and numerical simulation results are performed for verification. The method of the combined non-destructive testing of synchrotron radiation and image finite element technology provides a robust technique for evaluating the performances of additive-manufactured micro-lattice with complex microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Latture, R. X. Rodriguez, L. R. Holmes Jr., and F. W. Zok, Acta Mater. 149, 78 (2018).

    Article  ADS  Google Scholar 

  2. Q. Wu, A. Vaziri, M. E. Asl, R. Ghosh, Y. Gao, X. Wei, L. Ma, J. Xiong, and L. Wu, J. Mech. Phys. Solids 125, 112 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. T. Hsieh, B. Endo, Y. Zhang, J. Bauer, and L. Valdevit, J. Mech. Phys. Solids 125, 401 (2019), arXiv: 1904.06733.

    Article  ADS  Google Scholar 

  4. R. M. Gorguluarslan, S. K. Choi, and C. J. Saldana, J. Mech. Behav. BioMed. Mater. 71, 428 (2017).

    Article  Google Scholar 

  5. L. R. Meza, G. P. Phlipot, C. M. Portela, A. Maggi, L. C. Montemayor, A. Comella, D. M. Kochmann, and J. R. Greer, Acta Mater. 140, 424 (2017).

    Article  ADS  Google Scholar 

  6. T. Tancogne-Dejean, and D. Mohr, Int. J. Mech. Sci. 141, 101 (2018).

    Article  Google Scholar 

  7. F. Wang, J. Mech. Phys. Solids 114, 303 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. Qin, Q. Qi, P. J. Scott, and X. Jiang, Comput.-Aided Des. 111, 44 (2019).

    Article  Google Scholar 

  9. F. Forsberg, R. Mooser, M. Arnold, E. Hack, and P. Wyss, J. Struct. Biol. 164, 3 (2008).

    Article  Google Scholar 

  10. J. J. Williams, K. E. Yazzie, E. Padilla, N. Chawla, X. Xiao, and F. De Carlo, Int. J. Fatigue 57, 79 (2013).

    Article  Google Scholar 

  11. S. C. Garcea, I. Sinclair, S. M. Spearing, and P. J. Withers, Compos. Sci. Tech. 149, 81 (2017).

    Article  Google Scholar 

  12. A. Haboub, H. A. Bale, J. R. Nasiatka, B. N. Cox, D. B. Marshall, R. O. Ritchie, and A. A. MacDowell, Rev. Sci. Instrum. 85, 8 (2014).

    Google Scholar 

  13. C. Petit, E. Maire, S. Meille, and J. Adrien, Mater. Des. 120, 117 (2017).

    Article  Google Scholar 

  14. F. Rosa, S. Manzoni, and R. Casati, Mater. Des. 160, 1010 (2018).

    Article  Google Scholar 

  15. Y. Amani, S. Dancette, P. Delroisse, A. Simar, and E. Maire, Acta Mater. 159, 395 (2018).

    Article  ADS  Google Scholar 

  16. B. Yu, R. Blanc, C. Soutis, and P. J. Withers, Compos. Part A-Appl. Sci. Manufact. 82, 279 (2016).

    Article  Google Scholar 

  17. M. Blacklock, H. Bale, M. Begley, and B. Cox, J. Mech. Phys. Solids 60, 3 (2012).

    Article  Google Scholar 

  18. R. G. Rinaldi, M. Blacklock, H. Bale, M. R. Begley, and B. N. Cox, J. Mech. Phys. Solids 60, 8 (2012).

    Article  Google Scholar 

  19. A. Drach, B. Drach, and I. Tsukrov, Adv. Eng. Software 72, 18 (2014).

    Article  Google Scholar 

  20. A. J. Thompson, B. El Said, D. Ivanov, J. P. H. Belnoue, and S. R. Hallett, Int. J. Solids Struct. 154, 104 (2018).

    Article  Google Scholar 

  21. N. Naouar, E. Vidal-Salle, J. Schneider, E. Maire, and P. Boisse, Composite Struct. 132, 1094 (2015).

    Article  Google Scholar 

  22. N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, and P. Boisse, Composite Struct. 116, 165 (2014).

    Article  Google Scholar 

  23. I. Straumit, S. V. Lomov, and M. Wevers, Compos. Part A-Appl. Sci. Manufact. 69, 150 (2015).

    Article  Google Scholar 

  24. G. Fang, C. Chen, S. Yuan, S. Meng, and J. Liang, Appl. Compos. Mater. 25, 3 (2018).

    Google Scholar 

  25. X. Zhu, S. Ai, X. Lu, K. Cheng, X. Ling, L. Zhu, and B. Liu, Comput. Mater. Sci. 85, 38 (2014).

    Article  Google Scholar 

  26. M. A. Kader, M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar, A. D. Brown, and G. J. Appleby-Thomas, Int. J. Impact Eng. 96, 78 (2016).

    Article  Google Scholar 

  27. L. Liu, P. Kamm, F. Garcia-Moreno, J. Banhart, and D. Pasini, J. Mech. Phys. Solids 107, 160 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Song, L. Gao, K. Cao, H. Zhang, S. Xu, C. Jiang, J. U. Surjadi, Y. Xu, and Y. Lu, Composite Struct. 203, 750 (2018).

    Article  Google Scholar 

  29. Y. Xu, H. Zhang, B. Šavija, S. Chaves Figueiredo, and E. Schlangen, Mater. Des. 162, 143 (2019).

    Article  Google Scholar 

  30. M. Kunt, Signal Process. 2, 3 (1980).

    Article  Google Scholar 

  31. M. Smith, Z. Guan, and W. J. Cantwell, Int. J. Mech. Sci. 67, 28 (2013).

    Article  Google Scholar 

  32. C. Li, H. Lei, Y. Liu, X. Zhang, J. Xiong, H. Zhou, and D. Fang, Int. J. Mech. Sci. 145, 389 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WenWang Wu, Ran Tao or DaiNing Fang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11702023, and 11972081). The authors would like to thank the BMF Precision Technology Co., Ltd. for supporting the micro/nanoscale 3D printing work.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11433_2019_1522_MOESM1_ESM.pdf

Damage evolution of PµLSE additive-manufactured micro-lattice metastructures: Synchrotron radiation 3D tomography image-based analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Wu, W., Hu, W. et al. Damage evolution of PµLSE additive-manufactured micro-lattice metastructures: Synchrotron radiation 3D tomography image-based analysis. Sci. China Phys. Mech. Astron. 63, 104611 (2020). https://doi.org/10.1007/s11433-019-1522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1522-4

Keywords

PACS number(s)

Navigation