Skip to main content
Log in

Theoretical investigation on the energy absorption of ellipse-shaped self-locked tubes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Self-locked energy-absorbing systems have been proposed in previous studies to overcome the limitations associated with the round-tube systems because they can prevent the lateral splash of tubes from impact loadings without any constraints. In case of self-locked systems, the ellipse-shaped self-locked tube is considered to be an optimal design when compared with the ordinary circle-shaped self-locked tubes and other shaped self-locked tubes. In this study, we aim to theoretically analyze the ellipse-shaped self-locked tubes. Further, a plastic hinge model is developed to predict the force-displacement relation of the tube, which is compared with the deformation process observed in the experiment and finite element method (FEM) simulation. Using this model, the effects of tuning the geometric parameters of the tube on the energy absorption performance, including the deformation efficiency, energy absorption capacity, and effective stroke ratio, are simulated and analyzed. Finally, a guideline is provided with respect to the design of the ellipse-shaped self-locked tube in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lu, and T. Yu, Energy Absorption of Structures and Materials (Woodhead Publishing Limited, Cambridge, 2003), P. 385.

    Book  Google Scholar 

  2. A. A. A. Alghamdi, Thin Wall. Struct. 39, 189 (2001).

    Article  Google Scholar 

  3. W. Abramowicz, Thin Wall. Struct. 41, 91 (2003).

    Article  Google Scholar 

  4. W. Johnson, and S. R. Reid, Appl. Mech. Rev. 31, 277 (1978).

    Google Scholar 

  5. A. G. Olabi, E. Morris, and M. S. J. Hashmi, Thin Wall. Struct. 45, 706 (2008).

    Article  Google Scholar 

  6. P. H. Thornton, and R. A. Jeryan, Int. J. Impact Eng. 7, 167 (1988).

    Article  Google Scholar 

  7. K. Amini, W. Altenhof, S. C. K. Yuen, C. J. Opperman, and G. N. Nurick, Int. J. Impact Eng. 110, 228 (2017).

    Article  Google Scholar 

  8. A. Baroutaji, M. D. Gilchrist, D. Smyth, and A. G. Olabi, Thin Wall. Struct. 86, 121 (2015).

    Article  Google Scholar 

  9. K. R. F. Andrews, G. L. England, and E. Ghani, Int. J. Mech. Sci. 25, 687 (1983).

    Article  Google Scholar 

  10. J. Li, G. Gao, H. Dong, S. Xie, and W. Guan, Thin Wall. Struct. 103, 105 (2016).

    Article  ADS  Google Scholar 

  11. R. Liu, H. Wang, J. Yang, H. Liu, and Y. Sun, Appl. Math. Mech.-Engl. Ed. 36, 1005 (2015).

    Article  Google Scholar 

  12. H. Wang, R. Liu, J. Yang, H. Liu, and Y. Sun, Appl. Math. Mech.-Engl. Ed. 37, 227 (2016).

    Article  Google Scholar 

  13. X. W. Zhang, H. Su, and T. X. Yu, Int. J. Impact Eng. 36, 402 (2009).

    Article  Google Scholar 

  14. C. Y. Wu, L. Y. Li, and C. Thornton, Int. J. Impact Eng. 32, 593 (2005).

    Article  Google Scholar 

  15. G. M. Nagel, and D. P. Thambiratnam, Int. J. Impact Eng. 32, 1595 (2006).

    Article  Google Scholar 

  16. A. Baroutaji, E. Morris, and A. G. Olabi, Thin Wall. Struct. 82, 262 (2014).

    Article  Google Scholar 

  17. C. Zhou, B. Wang, J. Ma, and Z. You, Int. J. Mech. Sci. 118, 1 (2016).

    Article  Google Scholar 

  18. H. Wang, J. Yang, H. Liu, Y. Sun, and T. X. Yu, Thin Wall. Struct. 91, 72 (2015).

    Article  Google Scholar 

  19. Y. Liu, T. A. Schaedler, and X. Chen, Mech. Mater. 77, 1 (2014).

    Article  Google Scholar 

  20. Z. Ahmad, D. P. Thambiratnam, and A. C. C. Tan, Int. J. Impact Eng. 37, 475 (2010).

    Article  Google Scholar 

  21. S. Nemat-Nasser, W. J. Kang, J. D. McGee, W. G. Guo, and J. B. Isaacs, Int. J. Impact Eng. 34, 1119 (2007).

    Article  Google Scholar 

  22. Y. Xiang, M. Wang, T. Yu, and L. Yang, Int. J. Appl. Mech. 7, 1550060 (2015).

    Article  Google Scholar 

  23. E. E. Haro, A. G. Odeshi, and J. A. Szpunar, Int. J. Impact Eng. 96, 11 (2016).

    Article  Google Scholar 

  24. Y. Chen, C. Qiao, X. Qiu, S. Zhao, C. Zhen, and B. Liu, J. Mech. Phys. Solids 87, 130 (2016), arXiv: 1506.08508.

    Article  ADS  Google Scholar 

  25. K. Yang, Q. Qin, Z. Zhai, C. Qiao, Y. Chen, and J. Yang, Int. J. Impact Eng. 122, 209 (2018).

    Article  Google Scholar 

  26. K. Yang, Y. Chen, L. Zhang, F. Xiong, X. Hu, and C. Qiao, Int. J. Mech. Sci. 156, 312 (2019).

    Article  Google Scholar 

  27. J. A. Deruntz, and P. G. Hodge, J. Appl. Mech. T-ASME 30, 391 (1962).

    Article  Google Scholar 

  28. R. Burton, and J. Craig, An Investigation into the Energy Absorbing Properties of Metal Tubes Loaded in the Transverse Direction, BSc (Engineering) Report (1963).

  29. S. R. Reid, and T. Y. Reddy, Int. J. Solids Struct. 14, 213 (1978).

    Article  Google Scholar 

  30. C. Qiao, Y. Chen, S. Wang, K. Yang, and X. Qiu, Int. J. Mech. Sci. 123, 20 (2017).

    Article  Google Scholar 

  31. N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, and Q. Li, Finite Elem. Anal. Des. 104, 89 (2015).

    Article  Google Scholar 

  32. Y. Xiang, T. Yu, and L. Yang, Mater. Des. 89, 689 (2016).

    Article  Google Scholar 

  33. K. Yang, Y. Chen, S. Liu, C. Qiao, and J. Yang, Thin Wall. Struct. 119, 371 (2017).

    Article  ADS  Google Scholar 

  34. B. C. Chen, M. Zou, G. M. Liu, J. F. Song, and H. X. Wang, Int. J. Impact Eng. 115, 48 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuLi Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11622214, 11472027, and 11202012), the Academic Excellence Foundation of Beihang University for PhD Students and the Beijing Advanced Discipline Center for Unmanned Aircraft System are gratefully acknowledged.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Qiao, C., Xiong, F. et al. Theoretical investigation on the energy absorption of ellipse-shaped self-locked tubes. Sci. China Phys. Mech. Astron. 63, 294611 (2020). https://doi.org/10.1007/s11433-019-1518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1518-9

Keywords

PACS number(s)

Navigation