Skip to main content
Log in

Adhesion and peeling of a Fugu coal molecule on a graphene substrate: molecular dynamics simulations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Controlling coal dust produced in the process of underground coal mining is imperative because it can cause serious health problems, such as pneumoconiosis. In the present work, we have conducted a comprehensive investigation of the adhesion and peeling process of a coal molecule on graphene using molecular dynamics (MD) simulation. First, we simulate the adhesion of a coal molecule on a graphene substrate, where the critical adhesion distance and adhesion force are analyzed. Next, the process of a coal molecule peeled from the substrate is simulated, the equilibrium configurations, loading position, peeling force, and peeling angle of which are discussed. After comparing the MD simulation results with those of continuum models, we conclude that they are in excellent agreement. These analyses have deepened our understanding of the interplay between coal molecules and solid surfaces, which may prove beneficial when creating scientific methods of dust control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Melikoglu, Energy Strategy Rev. 22, 313 (2018).

    Google Scholar 

  2. S. Chang, J. Zhuo, S. Meng, S. Qin, and Q. Yao, Engineering 2, 447 (2016).

    Google Scholar 

  3. X. Xu, Y. Liu, F. Zhang, W. Di, and Y. Zhang, Catal. Today 298, 61 (2017).

    Google Scholar 

  4. M. Melikoglu, Renew. Sustain. Energy Rev. 74, 800 (2017).

    Google Scholar 

  5. J. Guo, L. Zhang, S. Liu, and B. Li, Fuel 231, 449 (2018).

    Google Scholar 

  6. J. Dong, Y. Cheng, B. Hu, C. Hao, Q. Tu, and Z. Liu, Powder Tech. 325, 412 (2018).

    Google Scholar 

  7. W. Ren, J. Shi, Q. Guo, Q. Zhao, and L. Bai, Process Saf. Environ. Protection 111, 740 (2017).

    Google Scholar 

  8. X. Lu, H. Zhu, and D. Wang, Powder Tech. 315, 270 (2017).

    Google Scholar 

  9. O. Acaroglu, and H. Ergin, Tunnel. Underground Space Tech. 21, 172 (2006).

    Google Scholar 

  10. Q. Wang, D. Wang, H. Wang, F. Han, X. Zhu, Y. Tang, and W. Si, Process Saf. Environ. Protection 96, 184 (2015).

    Google Scholar 

  11. Q. Wang, D. Wang, H. Wang, J. Liu, and F. He, Tunnel. Underground Space Tech. 59, 127 (2016).

    Google Scholar 

  12. Q. Li, B. Lin, S. Zhao, and H. Dai, Powder Tech. 233, 137 (2013).

    Google Scholar 

  13. Z. Xi, M. Jiang, J. Yang, and X. Tu, Process Saf. Environ. Protection 92, 637 (2014).

    Google Scholar 

  14. H. Wang, D. Wang, W. Ren, X. Lu, F. Han, and Y. Zhang, Adv. Powder Tech. 24, 257 (2013).

    Google Scholar 

  15. S. J. Page, and J. C. Volkwein, Eng. Min. J. 187, 50 (1986).

    Google Scholar 

  16. H. T. Wang, D. M. Wang, W. X. Ren, and Z. L. Xi, Metal Mine 402, 131 (2009).

    Google Scholar 

  17. C. Xu, D. Wang, H. Wang, H. Xin, L. Ma, X. Zhu, Y. Zhang, and Q. Wang, Powder Tech. 318, 33 (2017).

    Google Scholar 

  18. Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).

    ADS  Google Scholar 

  19. W. Yang, H. T. Wang, T. F. Li, and S. X. Qu, Sci. China-Phys. Mech. Astron. 62, 014601 (2019).

    Google Scholar 

  20. M. Gao, X. Li, and L. Guo, Fuel Proces. Tech. 178, 197 (2018).

    Google Scholar 

  21. M. Zheng, X. Li, J. Liu, and L. Guo, Energy Fuels 27, 2942 (2013).

    Google Scholar 

  22. Z. Zhang, C. Wang, and K. Yan, Miner. Eng. 79, 31 (2015).

    Google Scholar 

  23. J. You, L. Tian, C. Zhang, H. Yao, W. Dou, B. Fan, and S. Hu, Chin. J. Chem. Eng. 24, 1275 (2016).

    Google Scholar 

  24. Y. Song, Y. M. Zhu, and W. Li, Appl. Surf. Sci. 396, 291 (2017).

    ADS  Google Scholar 

  25. X. You, H. Wei, X. Zhu, X. Lyu, and L. Li, Mol. Phys. 116, 1670 (2018).

    ADS  Google Scholar 

  26. J. Zhang, K. Liu, M. B. Clennell, D. N. Dewhurst, Z. Pan, M. Pervukhina, and T. Han, Pet. Sci. 12, 692 (2015).

    Google Scholar 

  27. X. Shi, Y. Kong, Y. Zhao, and H. Gao, Acta Mech. Sin. 21, 249 (2005).

    ADS  Google Scholar 

  28. T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, and A. C. T. van Duin, npj Comput. Mater. 2, 15011 (2016).

    ADS  Google Scholar 

  29. T. R. Mattsson, J. M. D. Lane, K. R. Cochrane, M. P. Desjarlais, A. P. Thompson, F. Pierce, and G. S. Grest, Phys. Rev. B 81, 054103 (2010).

    ADS  Google Scholar 

  30. D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer-Verlag Berlin Heidelberg, Heidelberg, 2000).

    MATH  Google Scholar 

  31. Z. Peng, and S. Chen, Phys. Rev. E 91, 042401 (2015).

    ADS  Google Scholar 

  32. Y. Gong, S. Li, and J. Liu, Int. J. Appl. Mech. 10, 1850065 (2018).

    Google Scholar 

  33. J. Yin, Y. P. Zhao, and R. Z. Zhu, Mater. Sci. Eng.-A 409, 160 (2005).

    Google Scholar 

  34. Z. Peng, H. Yin, Y. Yao, and S. Chen, Phys. Rev. E 100, 032804 (2019).

    ADS  Google Scholar 

  35. K. Kendall, J. Phys. D-Appl. Phys. 8, 1449 (1975).

    ADS  Google Scholar 

  36. Z. L. Peng, S. H. Chen, and A. K. Soh, Int. J. Solids Struct. 47, 1952 (2010).

    Google Scholar 

  37. G. Q. Liu, S. Q. Li, and Q. Yao, J. Eng. Thermophys. 30, 803 (2009).

    Google Scholar 

  38. M. Tanaka, M. Komagata, M. Tsukada, and H. Kamiya, Powder Tech. 183, 273 (2008).

    Google Scholar 

  39. Y. Zhao, H. Song, S. Liu, C. Zhang, L. Dou, and A. Cao, Int. J. Rock Mech. Min. Sci. 116, 111 (2019).

    Google Scholar 

  40. J. Pan, Z. Meng, Q. Hou, Y. Ju, and Y. Cao, J. Struct. Geol. 54, 129 (2013).

    ADS  Google Scholar 

  41. K. Lin, and Y. P. Zhao, Extreme Mech. Lett. 30, 100501 (2019).

    Google Scholar 

  42. Y. P. Zhao, Sci. China Technol. Sci. 62, 2310 (2019).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wang or JianLin Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11972375), the Natural Science Foundation of Shandong Province (Grant No. ZR2017MA013), and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2013RCJJ025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Luan, Y., Wang, Q. et al. Adhesion and peeling of a Fugu coal molecule on a graphene substrate: molecular dynamics simulations. Sci. China Phys. Mech. Astron. 63, 294613 (2020). https://doi.org/10.1007/s11433-020-1542-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1542-6

Keywords

PACS number(s)

Navigation