Skip to main content
Log in

Surface protonation and oxygen evolution activity of epitaxial La1−xSrxCoO3 thin films

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

As an alternative electrode material, transition metal oxides are promising candidates due to multivalent nature and oxygen vacancies present in the structure with facilitate redox reactions. The aim of this study is to explore the intrinsic mechanism of oxygen evolution reaction (OER) using two-dimensional thin film La1−xSrxCoO3 electrode as a model. Herein, we report a planar two-dimensional model La1−xSrxCoO3 electrode grown on a Nb-SrTiO3 single-crystal substrate via pulsed laser deposition. The two-dimensional La1−xSrxCoO3 films offer different oxygen evolution activities at different pH electrolyte solutions. The mechanisms behind the variations of the oxygen evolution activity were discussed after comparing the oxygen evolution activity before and after treatments of the electrodes and measurements by various test methods. The results of this study offer a promising, low-cost electrode material for the efficient OER and a sustainable production of hydrogen fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. E. Kazzi, R. Haumont, N. Marzari, and T. J. Schmidt, Chem. Mater. 27, 7662 (2015).

    Article  Google Scholar 

  2. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, Science 334, 1383 (2011).

    Article  ADS  Google Scholar 

  3. S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, and A. T. Bell, J. Phys. Chem. C 119, 7243 (2015).

    Article  Google Scholar 

  4. A. Grimaud, K. J. May, C. E. Carlton, Y. L. Lee, M. Risch, W. T. Hong, J. Zhou, and Y. Shao-Horn, Nat. Commun. 4, 2439 (2013).

    Article  ADS  Google Scholar 

  5. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H. B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C. W. Nan, J. Wu, Y. Tokura, and P. Yu, Nature 546, 124 (2017).

    Article  ADS  Google Scholar 

  6. Y. Liang, Y. Li, H. Wang, and H. Dai, J. Am. Chem. Soc. 135, 2013 (2013).

    Article  Google Scholar 

  7. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, J. Am. Chem. Soc. 135, 8452 (2013).

    Article  Google Scholar 

  8. Y. Gorlin, C. J. Chung, J. D. Benck, D. Nordlund, L. Seitz, T. C. Weng, D. Sokaras, B. M. Clemens, and T. F. Jaramillo, J. Am. Chem. Soc. 136, 4920 (2014).

    Article  Google Scholar 

  9. T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, 2009), p.43.

    Book  Google Scholar 

  10. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, Nat. Chem. 3, 546 (2011).

    Article  Google Scholar 

  11. H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm, and H. N. Lee, Nat. Mater. 12, 1057 (2013), arXiv: 1308.5602.

    Article  ADS  Google Scholar 

  12. J. Zhao, Y. Luo, J. O. Wang, H. Qian, C. Liu, X. He, Q. Zhang, H. Huang, B. Zhang, S. Li, E. Guo, C. Ge, T. Yang, X. Li, M. He, L. Gu, K. J. Jin, K. Ibrahim, and H. Guo, Sci. China Mater. 62, 1162 (2019).

    Article  Google Scholar 

  13. J. Zhao, H. Guo, X. He, Q. Zhang, L. Gu, X. Li, K. Jin, T. Yang, C. Ge, Y. Luo, M. He, Y. Long, J. Wang, H. Qian, C. Wang, H. Lu, G. Yang, and K. Ibrahim, ACS Appl. Mater. Interfaces 10, 10211 (2018).

    Article  Google Scholar 

  14. K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y. L. Lee, A. Grimaud, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 3264 (2012).

    Article  Google Scholar 

  15. M. Komo, A. Hagiwara, S. Taminato, M. Hirayama, and R. Kanno, Electrochemistry 80, 834 (2012).

    Article  Google Scholar 

  16. Y. Miyahara, K. Miyazaki, T. Fukutsuka, and T. Abe, ChemElectroChem 3, 214 (2015).

    Article  Google Scholar 

  17. L. F. Wang, Y. Luo, J. S. Wang, X. S. Huang, Z. M. Gao, T. Y. Yang, X. L. Li, P. Li, K. J. Jin, W. F. Zhang, and H. Z. Guo, Sci. China-Phys. Mech. Astron. 62, 987721 (2019).

    Article  Google Scholar 

  18. H. K. Song, K. Xia, J. Xiao, Sci. China-Phys. Mech. Astron. 61, 107011 (2018).

    Article  ADS  Google Scholar 

  19. D. C. Yuan, J. L. Wang, N. Fu, X. L. Wu, Y. J. Ma, and S. F. Wang, Sci. China-Phys. Mech. Astron. 61, 107321 (2018).

    Article  ADS  Google Scholar 

  20. R. Tang, Y. Nie, J. K. Kawasaki, D. Y. Kuo, G. Petretto, G. Hautier, G. M. Rignanese, K. M. Shen, D. G. Schlom, and J. Suntivich, J. Mater. Chem. A 4, 6831 (2016).

    Article  Google Scholar 

  21. L. Wang, K. A. Stoerzinger, L. Chang, J. Zhao, Y. Li, C. S. Tang, X. Yin, M. E. Bowden, Z. Yang, H. Guo, L. You, R. Guo, J. Wang, K. Ibrahim, J. Chen, A. Rusydi, J. Wang, S. A. Chambers, and Y. Du, Adv. Funct. Mater. 28, 1803712 (2018).

    Article  Google Scholar 

  22. K. A. Stoerzinger, W. T. Hong, X. R. Wang, R. R. Rao, S. B. Sub-ramanyam, C. Li, C. Ariando, T. Venkatesan, Q. Liu, E. J. Crumlin, K. K. Varanasi, and Y. Shao-Horn, Chem. Mater. 29, 9990 (2017).

    Article  Google Scholar 

  23. K. A. Stoerzinger, M. Risch, J. Suntivich, W. M. Lü, J. Zhou, M. D. Biegalski, H. M. Christen, H. M. Ariando, T. Venkatesan, and Y. Shao-Horn, Energy Environ. Sci. 6, 1582 (2013).

    Article  Google Scholar 

  24. Q. Van Overmeere, J. D. Baniecki, T. Yamazaki, D. Ricinschi, H. Aso, Y. Miyata, H. Yamada, N. Fujimura, Y. Kataoka, Y. Imanaka, Appl. Phys. Lett. 106, 241602 (2015).

    Article  ADS  Google Scholar 

  25. A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, and Y. Shao-Horn, Nat. Chem. 9, 457 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WeiFeng Zhang or HaiZhong Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574365, and 11974099), and the Program for the Innovation Team of Science and Technology in University of Henan (Grant No. 20IRTSTHN014). The authors thank the beam line BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and helps during experiments.

Supporting Information

The supporting information is available online at phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, L., Li, M. et al. Surface protonation and oxygen evolution activity of epitaxial La1−xSrxCoO3 thin films. Sci. China Phys. Mech. Astron. 63, 297011 (2020). https://doi.org/10.1007/s11433-019-1508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1508-2

Keywords

PACS number(s)

Navigation