Skip to main content
Log in

Amplification of terahertz/infrared field at the nodes of Ranvier for myelinated nerve

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The myelination of axons was the last major evolution in the vertebrate nervous system. Myelin promotes the speed of action potential by two orders, and modulates the conduction of neurons, important for learning new skills. However, the intrinsic mechanism for high-speed information propagation in myelin in the nervous systems is still unclear. We propose that myelinated nerve fibres serve as dielectric waveguides for the high-frequency electromagnetic information in a certain mid-infrared to terahertz spectral range. Based on the structure characteristics of myelinated nerve composed of periodic nodes of Ranvier and myelin sheath, the energy for the signal propagation is supplied and amplified when crossing the nodes of Ranvier via a periodic relay. In this work, we exploit the quasi-quantum model of amplification for neural terahertz/infrared information at the nodes of Ranvier, and prove the existence of biomolecular ensemble for three-energy-level amplification, revealing the essential mechanism of high-speed electromagnetic information transmitting in myelinated nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Nave, Nature 468, 244 (2010)

    Article  ADS  Google Scholar 

  2. R. D. Fields, Science 344, 264 (2014).

    Article  ADS  Google Scholar 

  3. M. E. Bechler, and C. F. Constant, Science 344, 480 (2014).

    Article  ADS  Google Scholar 

  4. I. A. McKenzie, D. Ohayon, H. Li, J. Paes de Faria, B. Emery, K. Tohyama, and W. D. Richardson, Science 346, 318 (2014).

    Article  ADS  Google Scholar 

  5. A. F. Huxley, and R. Stämpeli, J. Physiol. 108, 315 (1949).

    Article  Google Scholar 

  6. L. Goldman, and J. S. Albus, J. Biophys. 8, 5 (1968)

    Article  Google Scholar 

  7. C. Cohen, M. Popovic, J. Klooster, M. Weil, and M. Kole, Cell 180, 1 (2020).

    Article  Google Scholar 

  8. J. E. Rinholm, and L. H. Bergersen, Nature 487, 435 (2012)

    Article  ADS  Google Scholar 

  9. R. D. Fields, Nature 16, 756 (2015).

    Google Scholar 

  10. Z. Zhu, C. Cheng, C. Chang, G. Ren, J. Zhang, Y. Peng, J. Han, and H. Zhao, Analyst 144, 2504 (2019)

    Article  ADS  Google Scholar 

  11. C. Cheng, Z. Zhu, S. Li, G. Ren, J. Zhang, H. Cong, Y. Peng, J. Han, C. Chang, and H. Zhao, RSC Adv. 9, 20240 (2019).

    Article  Google Scholar 

  12. P. Chevalier, A. Amirzhan, F. Wang, M. Piccardo, S. G. Johnson, F. Capasso, and H. O. Everitt, Science 366, 856 (2019)

    Article  ADS  Google Scholar 

  13. C. A. Curwen, J. L. Reno, and B. S. Williams, Nat. Photon. 13, 855 (2019).

    Article  ADS  Google Scholar 

  14. F. Duan, Y. Y. Wang, D. G. Xu, J. Shi, L. Y. Chen, L. Cui, Y. H. Bai, Y. Xu, J. Yuan, and C. Chang, WJGO 11, 153 (2019)

    Article  Google Scholar 

  15. Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, Biomed. Opt. Express 9, 14 (2018).

    Article  Google Scholar 

  16. G. Liu, Chin. Sci. Bull. 63, 3864 (2018)

    Article  Google Scholar 

  17. G. Liu, C. Chang, Z. Qiao, K. Wu, Z. Zhu, G. Cui, W. Peng, Y. Tang, J. Li, and C. Fan, Adv. Funct. Mater. 29, 1807862 (2019)

    Article  Google Scholar 

  18. Z. Xiang, C. Tang, C. Chang, and G. Liu, Sci. Bull. 65, 308 (2020).

    Article  Google Scholar 

  19. W. Cope, B. Math. Biol. 35, 5 (1973)

    Google Scholar 

  20. J. Summhammer, V. Salarib, and G. Bernroider, J. Integra. Neurosci. 11, 2 (2012).

    Google Scholar 

  21. S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).

    Article  ADS  Google Scholar 

  22. A. Imamoglu, Phys. Rev. A 40, 2835 (1989)

    Article  ADS  Google Scholar 

  23. S. Basile, and P. Lambropoulos, Opt. Commun. 78, 163 (1990)

    Article  ADS  Google Scholar 

  24. V. R. Blok, and G. M. Krochik, Phys. Rev. A 41, 1517 (1990)

    Article  ADS  Google Scholar 

  25. K. Shen, An introduction to Quantum Optics (Beijing University of Technology Press, Beijing, 1995), p. 281

    Google Scholar 

  26. M. O. Scully, and M. S. Zubairy, Quantum Optics (World Book Publishing Company, Beijing, 1997), p. 238.

    Book  Google Scholar 

  27. R. D. Levine, Intramolecular Dynamics (Springer, Dordrecht, 1989), p.17.

    Google Scholar 

  28. L. Chen, Y. Zhou, Y. Li, and M. Hong, Appl. Phys. Rev. 6, 021304 (2019).

    Article  ADS  Google Scholar 

  29. L. W. Chen, Y. Zhou, M. X. Wu, and M. H. Hong, Opto-Electronic Adv. 1, 17000101 (2018)

    Article  Google Scholar 

  30. Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, Opt. Lett. 43, 34 (2018).

    Article  ADS  Google Scholar 

  31. J. H. Soh, M. Wu, G. Gu, L. Chen, and M. Hong, Appl. Opt. 55, 3751 (2016)

    Article  ADS  Google Scholar 

  32. R. Zhou, M. X. Wu, F. Shen, and M. H. Hong, Acta Phys. Sin. 66, 140702 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Chang or GuoZhi Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51677145, and 11622542).

Supporting Information The supporting information is available online at phys.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, K., Liu, C. et al. Amplification of terahertz/infrared field at the nodes of Ranvier for myelinated nerve. Sci. China Phys. Mech. Astron. 63, 274211 (2020). https://doi.org/10.1007/s11433-019-1530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1530-2

Keywords

PACS number(s)

Navigation