Skip to main content
Log in

Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose and numerically realize an optical spike-timing dependent plasticity (STDP) scheme by using a single vertical-cavity surface-emitting laser (VCSEL). In the scheme, the VCSEL is subjected to an orthogonally-polarized continuous-wave optical injection (OPCWOI) and dual-polarized pulsed optical injections (DPPOI). Based on the widely used spin-flip model, the response spiking dynamics of VCSEL is numerically studied, and then the optical STDP in a single VCSEL is explored. The roles of bias current, the strength of OPCWOI and DPPOI, and the frequency detuning on the optical STDP curve are numerically analyzed. It is found that, by simultaneously utilizing the response spiking dynamics in two orthogonal polarization modes, an optical STDP could be achieved by using a single VCSEL. Furthermore, the weight update of STDP curve can be calculated in real-time. Additionally, the STDP curves can also be controlled by adjusting some controllable parameters. The real-time optical STDP based on a single VCSEL is numerically realized for the first time, which paves the way towards fully VCSELs-based photonic neuromorphic systems with low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prucnal P R, Shastri B J, de Lima T F, et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8: 228–299

    Article  Google Scholar 

  2. Tait A N, Thomas F D L, Zhou E, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep, 2017, 7: 1–10

    Article  Google Scholar 

  3. de Lima T F, Peng H T, Tait A N, et al. Machine learning with neuromorphic photonics. J Lightw Technol, 2019, 37: 1515–1534

    Article  Google Scholar 

  4. Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208–214

    Article  Google Scholar 

  5. Xu S F, Wang J, Wang R, et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt Express, 2019, 27: 19778

    Article  Google Scholar 

  6. Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575: 607–617

    Article  Google Scholar 

  7. Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quantum Electron, 2019, 25: 1–9

    Article  Google Scholar 

  8. Robertson J, Wade E, Kopp Y, et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J Sel Top Quantum Electron, 2020, 26: 1–15

    Article  Google Scholar 

  9. Peng H T, Angelatos G, de Lima T F, et al. Temporal information processing with an integrated laser neuron. IEEE J Sel Top Quantum Electron, 2020, 26: 1–9

    Article  Google Scholar 

  10. Hurtado A, Henning I D, Adams M J. Optical neuron using polarisation switching in a 1550 nm-VCSEL. Opt Express, 2010, 18: 25170

    Article  Google Scholar 

  11. Coomans W, Gelens L, Beri S, et al. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E, 2011, 84: 036209

    Article  Google Scholar 

  12. Barbay S, Kuszelewicz R, Yacomotti A M. Excitability in a semiconductor laser with saturable absorber. Opt Lett, 2011, 36: 4476–4478

    Article  Google Scholar 

  13. Hurtado A, Schires K, Henning I D, et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl Phys Lett, 2012, 100: 103703

    Article  Google Scholar 

  14. Romeira B, Javaloyes J, Ironside C N, et al. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt Express, 2013, 21: 2093-20940

    Article  Google Scholar 

  15. Nahmias M A, Shastri B J, Tait A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Sel Top Quantum Electron, 2013, 19: 1–12

    Article  Google Scholar 

  16. Alexander K, van Vaerenbergh T, Fiers M, et al. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. Opt Express, 2013, 21: 26182-26191

    Article  Google Scholar 

  17. Selmi F, Braive R, Beaudoin G, et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett, 2014, 112: 183902

    Article  Google Scholar 

  18. Hurtado A, Javaloyes J. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl Phys Lett, 2015, 107: 241103

    Article  Google Scholar 

  19. Mesaritakis C, Kapsalis A, Bogris A, et al. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers. Sci Rep, 2016, 6: 39317

    Article  Google Scholar 

  20. Garbin B, Dolcemascolo A, Prati F, et al. Refractory period of an excitable semiconductor laser with optical injection. Phys Rev E, 2017, 95: 012214

    Article  Google Scholar 

  21. Robertson J, Deng T, Javaloyes J, et al. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt Lett, 2017, 42: 1560–1563

    Article  Google Scholar 

  22. Xiang S Y, Zhang H, Guo X X, et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection. IEEE J Sel Top Quantum Electron, 2017, 23: 1-7

    Article  Google Scholar 

  23. Deng T, Robertson J, Hurtado A. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: towards neuromorphic photonic networks. IEEE J Sel Top Quantum Electron, 2017, 23: 1-8

    Google Scholar 

  24. Ma P Y, Shastri B J, de Lima T F, et al. All-optical digital-to-spike conversion using a graphene excitable laser. Opt Express, 2017, 25: 33504–33513

    Article  Google Scholar 

  25. Ma P Y, Shastri B J, de Lima T F, et al. Simultaneous excitatory and inhibitory dynamics in an excitable laser. Opt Lett, 2018, 43: 3802–3805

    Article  Google Scholar 

  26. Robertson J, Ackemann T, Lester L F, et al. Externally-triggered activation and inhibition of optical pulsating regimes in quantum-dot mode-locked lasers. Sci Rep, 2018, 8: 12515

    Article  Google Scholar 

  27. Xiang S Y, Zhang Y H, Guo X X, et al. Photonic generation of neuron-like dynamics using VCSELs subject to double polarized optical injection. J Lightw Technol, 2018, 36: 4227–4234

    Article  Google Scholar 

  28. Zhang Y H, Xiang S Y, Guo X X, et al. Polarization-resolved and polarization- multiplexed spike encoding properties in photonic neuron based on VCSEL-SA. Sci Rep, 2018, 8: 16095

    Article  Google Scholar 

  29. Deng T, Robertson J, Wu Z M, et al. Stable propagation of inhibited spiking dynamics in vertical-cavity surface-emitting lasers for neuromorphic photonic networks. IEEE Access, 2018, 6: 67951-67958

    Article  Google Scholar 

  30. Zhang Y H, Xiang S Y, Guo X X, et al. All-optical inhibitory dynamics in photonic neuron based on polarization mode competition in a VCSEL with an embedded saturable absorber. Opt Lett, 2019, 44: 1548–1551

    Article  Google Scholar 

  31. Tait A N, de Lima T F, Nahmias M A, et al. Silicon photonic modulator neuron. Phys Rev Appl, 2019, 11: 064043

    Article  Google Scholar 

  32. Pammi V A, Alfaro-Bittner K, Clerc M G, et al. Photonic computing with single and coupled spiking micropillar lasers. IEEE J Sel Top Quantum Electron, 2020, 26: 1–7

    Article  Google Scholar 

  33. Iga K. Forty years of vertical-cavity surface-emitting laser: invention and innovation. Jpn J Appl Phys, 2018, 57: 08PA01

    Article  Google Scholar 

  34. Jiang B, Wu Z M, Deng T, et al. Polarization switching characteristics of 1550-nm vertical-cavity surface-emitting lasers subject to double polarization pulsed injection. IEEE J Quantum Electron, 2016, 52: 1–7

    Google Scholar 

  35. Bi G Q, Poo M M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 1998, 18: 10464–10472

    Article  Google Scholar 

  36. Bi G Q, Poo M M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci, 2001, 24: 139–166

    Article  Google Scholar 

  37. Fok M P, Tian Y, Rosenbluth D, et al. Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity. Opt Lett, 2013, 38: 419–421

    Article  Google Scholar 

  38. Toole R, Fok M P. Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization. Opt Express, 2015, 23: 16133–16141

    Article  Google Scholar 

  39. Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation. Opt Express, 2015, 23: 25247–25258

    Article  Google Scholar 

  40. Toole R, Tait A N, de Lima T F, et al. Photonic implementation of spike-timing-dependent plasticity and learning algorithms of biological neural systems. J Lightw Technol, 2016, 34: 470–476

    Article  Google Scholar 

  41. Li Q, Wang Z, Le Y S, et al. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier. In: Proceedings of SPIE, 2016. 10019

    Google Scholar 

  42. Xiang S Y, Gong J K, Zhang Y H, et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA. IEEE J Quantum Electron, 2018, 54: 1–7

    Article  Google Scholar 

  43. Martin-Regalado J, Prati F, Miguel M S, et al. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 1997, 33: 765–783

    Article  Google Scholar 

  44. Perez P, Valle A, Pesquera L, et al. All-optical inverter based on polarization switching in VCSELs subject to single and dual optical injection. IEEE J Sel Top Quantum Electron, 2013, 19: 1700408

    Article  Google Scholar 

  45. Xiang S Y, Pan W, Luo B, et al. Influence of variable-polarization optical feedback on polarization switching properties of mutually coupled VCSELs. IEEE J Sel Top Quantum Electron, 2013, 19: 1700108

    Article  Google Scholar 

  46. Salvide M F, Torre M S, Henning I D, et al. Dynamics of normal and reverse polarization switching in 1550-nm VCSELs under single and double optical injection. IEEE J Sel Top Quantum Electron, 2015, 21: 643–651

    Article  Google Scholar 

  47. Jiang N, Xue C, Liu D, et al. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt Lett, 2017, 42: 1055-1058

    Article  Google Scholar 

  48. Li N Q, Susanto H, Cemlyn B R, et al. Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers. Phys Rev A, 2017, 96: 013840

    Article  Google Scholar 

  49. Jiang N, Wang Y, Zhao A, et al. Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators. Opt Express, 2020, 28: 1999

    Article  Google Scholar 

  50. Xiang S Y, Ren Z X, Zhang Y H, et al. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA. Opt Lett, 2020, 45: 1104–1107

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Program of China (Grant No. 2018YFB2200500) and National Natural Science Foundation of China (Grant Nos. 61974177, 61674119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiying Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Han, Y., Guo, X. et al. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection. Sci. China Inf. Sci. 63, 160405 (2020). https://doi.org/10.1007/s11432-020-2820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2820-y

Keywords

Navigation