Skip to main content
Log in

Towards silicon photonic neural networks for artificial intelligence

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Brain-inspired photonic neural networks for artificial intelligence have attracted renewed interest. For many computational tasks, such as image recognition, speech processing and deep learning, photonic neural networks have the potential to increase the computing speed and energy efficiency on the orders of magnitude compared with digital electronics. Silicon Photonics, which combines the advantages of electronics and photonics, brings hope for the large-scale photonic neural network integration. This paper walks through the basic concept of artificial neural networks and focuses on the key devices which construct the silicon photonic neuromorphic systems. We review some recent important progress in silicon photonic neural networks, which include multilayer artificial neural networks and brain-like neuromorphic systems, for artificial intelligence. A prototype of silicon photonic artificial intelligence processor for ultra-fast neural network computing is also proposed. We hope this paper gives a detailed overview and a deeper understanding of this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lane N D, Bhattacharya S, Mathur A, et al. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput, 2017, 16: 82–88

    Article  Google Scholar 

  2. Wu N J. Neuromorphic vision chips. Sci China Inf Sci, 2018, 61: 060421

    Article  Google Scholar 

  3. Davies M, Srinivasa N, Lin T H, et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38: 82–99

    Article  Google Scholar 

  4. Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668–673

    Article  Google Scholar 

  5. Graves A, Wayne G, Reynolds M, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 2016, 538: 471–476

    Article  Google Scholar 

  6. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436–444

    Article  Google Scholar 

  7. Esser S K, Merolla P A, Arthur J V, et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc Natl Acad Sci USA, 2016, 113: 11441–11446

    Article  Google Scholar 

  8. Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530: 144–147

    Article  Google Scholar 

  9. Miller DAB. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166-1185

    Article  Google Scholar 

  10. Liu S H, Wang S Q, Shi W H, et al. Vehicle tracking by detection in UAV aerial video. Sci China Inf Sci, 2019, 62: 024101

    Article  Google Scholar 

  11. Levinson J, Askeland J, Becker J, et al. Towards fully autonomous driving: systems and algorithms. In: Proceedings of 2011 IEEE Intelligent Vehicles Symposium (IV), 2011. 163–168

    Chapter  Google Scholar 

  12. Tait A N, de Lima T F, Nahmias M A, et al. Silicon photonic modulator neuron. Phys Rev Appl, 2019, 11: 064043

    Article  Google Scholar 

  13. Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528: 534–538

    Article  Google Scholar 

  14. Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556: 349–354

    Article  Google Scholar 

  15. Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18: 073003

    Article  Google Scholar 

  16. Wang X X, Liu J F. Emerging technologies in Si active photonics. J Semicond, 2018, 39: 061001

    Article  Google Scholar 

  17. Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529: 484–489

    Article  Google Scholar 

  18. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, 2012. 1097–1105

    Google Scholar 

  19. Clements W R, Humphreys P C, Metcalf B J, et al. Optimal design for universal multiport interferometers. Optica, 2016, 3: 1460–1465

    Article  Google Scholar 

  20. Ribeiro A, Ruocco A, Vanacker L, et al. Demonstration of a 4x4-port universal linear circuit. Optica, 2016, 3: 1348–1357

    Article  Google Scholar 

  21. Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photon, 2017, 11: 441–446

    Article  Google Scholar 

  22. Hughes T W, Minkov M, Shi Y, et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 2018, 5: 864–871

    Article  Google Scholar 

  23. Chiles J, Buckley S M, Nam S W, et al. Design, fabrication, and metrology of 10 × 100 multi-planar integrated photonic routing manifolds for neural networks. APL Photon, 2018, 3: 106101

    Article  Google Scholar 

  24. Tait A N, Nahmias M A, Shastri B J, et al. Broadcast and weight: an integrated network for scalable photonic spike processing. J Lightw Technol, 2014, 32: 4029–4041

    Article  Google Scholar 

  25. Tait A N, de Lima T F, Zhou E, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep, 2017, 7: 7430

    Article  Google Scholar 

  26. Peng H-T, Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2018, 24: 1–15

    Article  Google Scholar 

  27. Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208–214

    Article  Google Scholar 

  28. Chakraborty I, Saha G, Roy K. Photonic in-memory computing primitive for spiking neural networks using phase-change materials. Phys Rev Appl, 2019, 11: 014063

    Article  Google Scholar 

  29. Nahmias M A, de Lima T F, Tait A N, et al. Photonic multiply-accumulate operations for neural networks. IEEE J Sel Top Quantum Electron, 2019, 26: 1–18

    Article  Google Scholar 

  30. Lee H, Chen T, Li J, et al. Ultra-low-loss optical delay line on a silicon chip. Nature Commun, 2012, 3: 1–7

    Article  Google Scholar 

  31. Notaros J, Pavanello F, Wade M T, et al. Ultra-efficient cmos fiber-to-chip grating couplers. In: Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016. 1–3

    Google Scholar 

  32. Xiao X, Xu H, Li X Y, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21: 4116–4125

    Article  Google Scholar 

  33. Sun J, Kumar R, Sakib M, et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J Lightw Technol, 2019, 37: 110–115

    Article  Google Scholar 

  34. Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096–1101

    Article  Google Scholar 

  35. Pai S, Bartlett B, Solgaard O, et al. Matrix optimization on universal unitary photonic devices. Phys Rev Appl, 2019, 11: 064044

    Article  Google Scholar 

  36. Tait A N, Wu A X, de Lima T F, et al. Microring weight banks. IEEE J Sel Top Quantum Electron, 2016, 22: 312–325

    Article  Google Scholar 

  37. Biberman A, Chan J, Bergman K. On-chip optical interconnection network performance evaluation using power penalty metrics from silicon photonic modulators. In: Proceedings of 2010 IEEE International Interconnect Technology Conference, 2010. 1–3

    Google Scholar 

  38. Bangari V, Marquez B A, Miller H, et al. Digital electronics and analog photonics for convolutional neural networks (deap-CNNs). IEEE J Sel Top Quantum Electron, 2019, 26:1–13

    Article  Google Scholar 

  39. Xu S F, Wang J, Zou W W. High-energy-efficiency integrated photonic convolutional neural networks. 2019. ArXiv: 1910.12635

    Google Scholar 

  40. Lawson C L, Hanson R J. Solving Least Squares Problems. Philadelphia: Society for Industrial and Applied Mathematics, 1995. 15

    Book  MATH  Google Scholar 

  41. Mourgias-Alexandris G, Tsakyridis A, Passalis N, et al. An all-optical neuron with sigmoid activation function. Opt Express, 2019, 27: 9620–9630

    Article  Google Scholar 

  42. Coarer F D, Sciamanna M, Katumba A, et al. All-optical reservoir computing on a photonic chip using silicon-based ring resonators. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8

    Article  Google Scholar 

  43. Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator. Phys Rev Lett, 1994, 73: 58–61

    Article  Google Scholar 

  44. Burr G W, BrightSky M J, Sebastian A, et al. Recent progress in phase-change memory technology. IEEE J Emerg Sel Top Circuits Syst, 2016, 6: 146–162

    Article  Google Scholar 

  45. Miller DAB. Attojoule optoelectronics for low-energy information processing and communications. J Lightw Technol, 2017, 35: 346–396

    Article  Google Scholar 

  46. Zhu Y X, Zhang F, Yang F, et al. Toward single lane 200G optical interconnects with silicon photonic modulator. J Lightw Technol, 2019, 38: 67–74

    Article  Google Scholar 

  47. Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators. 2019. ArXiv: 1909.09778

    Google Scholar 

  48. Jang M, Horie Y, Shibukawa A, et al. Wavefront shaping with disorder-engineered metasurfaces. Nat Photon, 2018, 12: 84–90

    Article  Google Scholar 

  49. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6: 824–832

    Article  Google Scholar 

  50. Jouppi N P, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, 2017. 1–12

    Google Scholar 

  51. Mahmoodi M R, Strukov D. An ultra-low energy internally analog, externally digital vector-matrix multiplier based on nor flash memory technology. In: Proceedings of the 55th Annual Design Automation Conference, 2018. 1–6

    Google Scholar 

  52. Nahmias M A, Shastri B J, Tait A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Sel Top Quantum Electron, 2013, 19: 1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61635001, 61822508), Beijing Municipal Science & Technology Commission (Grant No. Z19110004819006), and National Key R&D Program of China (Grant No. 2018YFB2201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, B., Shu, H., Wang, X. et al. Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63, 160403 (2020). https://doi.org/10.1007/s11432-020-2872-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2872-3

Keywords

Navigation