Skip to main content
Log in

Chaos in a cyclic three-species predator–prey system with a partial consumption of superpredator

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper aims at the detailed numerical analysis of a cyclic three species predator–prey model where the prey consumes only a part of the super-predator population. Such a model exists only when the prey acts as an omnivore. Here, we have investigated the dynamical behaviour of the prey, middle predator and super-predator. All the possible equilibrium points of the model are computed and the existence and stability condition of the equilibrium states are determined. The phase portraits are generated for different sets of parameter values. The long term behaviour of the system is investigated by studying the bifurcation structure and nature of the attractors, thereby identifying the domain of chaos, as each of the control parameter is varied independently. Finally, we show that a transition from chaotic domain to escape or vice-versa of the predator in a small region of the parameter plane leads to a fractal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A J Lotka, Elements of mathematical biology (Williams and Wilkins, Baltimore, USA, 1925)

    MATH  Google Scholar 

  2. V Volterra, Mem. Acad. Lincei. 2, 31 (1926)

    Google Scholar 

  3. N Kasarinoff and P van der Deiesch, Math. Biosci. 39, 124 (1978)

    Google Scholar 

  4. Y Kuang, Appl. Anal. 29, 269 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. R R Dodd, J. Math. Biol. 35, 432 (1997)

    Article  MathSciNet  Google Scholar 

  6. G S K Walkowicz, SIAM J. Appl. Math. 48, 592 (1988)

    Article  MathSciNet  Google Scholar 

  7. K P Harikrishnan, Pramana – J. Phys.90: 24 (2018)

  8. R M May, J. Theor. Biol. 51(2), 511 (1975)

    Article  Google Scholar 

  9. A Hastings and T Powell, Ecology 72, 8956 (1991)

    Article  Google Scholar 

  10. A Klebanoff and A Hastings, J. Math. Biol 32, 427 (1994)

    Article  MathSciNet  Google Scholar 

  11. Y A Kuznetsov, O De Feo and S Rinaldi, SIAM J. Appl. Math. 62(2), 462 (2001)

    Article  MathSciNet  Google Scholar 

  12. Temple H Fay and Johanna C Greeff, Ecol. Modell. 196, 237 (2006)

    Article  Google Scholar 

  13. Erica Chauvet, Joseph E Paullet, Joseph P Previte and Zac Walls, Math. Mag.75(4), 243 (2002)

    Article  MathSciNet  Google Scholar 

  14. M B Elowitz and S Leibler, Nature 403, 335 (2000)

    Article  ADS  Google Scholar 

  15. B Kerr, M A Riley, M W Feldman and B J M Bohannan, Nature 418, 171 (2002)

    Article  ADS  Google Scholar 

  16. B Sinervo and C M Lively, Nature 380, 240 (1996)

    Article  ADS  Google Scholar 

  17. D R Taylor and L W Aarssen, Am. Nat. 136, 305 (1990)

    Article  Google Scholar 

  18. D D Cameron, A White and J Antonovics, J. Ecol. 97(6), 1311 (2009)

    Article  Google Scholar 

  19. R A Lankau and S Y Strauss, Science 317(5844), 1561 (2007)

    Article  ADS  Google Scholar 

  20. B C Kirkup and M A Riley, Nature 428, 412 (2004)

    Article  ADS  Google Scholar 

  21. J Hofbauer and K Sigmund, Evolutionary games and population dynamics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  22. L Frachebourg, P L Krapivsky and E Ben-Naim, Phys. Rev. E 54, 6186 (1996)

    Article  ADS  Google Scholar 

  23. A Provata, G Nicolis and F Baras, J. Chem. Phys. 110, 8361 (1999)

    Article  ADS  Google Scholar 

  24. G Szabó and T Czáran, Phys. Rev. E 63(6), 061904 (2001)

    Article  ADS  Google Scholar 

  25. P P Saratchandran, K C Ajithprasad and K P Harikrishnan, Annu. Rev. Chaos Theory Bifurc. Dynam. Syst. 5, 10 (2015)

    Google Scholar 

  26. Abd-Elalim A Elsadany, Comp. Ecol. Software 2(2), 124 (2012)

    Google Scholar 

  27. Arild Wikan and Ørjan Kristensen, Disc. Dynam. Nature Soc.2019, 1 (2019)

    Article  Google Scholar 

  28. P V Ivanchikov and L V Nedorezov, Comput. Ecol. Software1(2), 86 (2011)

    Google Scholar 

  29. Azmy S Ackleh and Patrick De Leenheer, J. Biol. Dynam.2(4), 415 (2008)

    Article  Google Scholar 

  30. Q Liu and R Xu, Nonlinear Phenom. Complex Syst. 2(6), 579 (2003)

    Google Scholar 

  31. M R Sagaya Raj, A G M Selvam and R Janagaraj, Int. J. Emerging Res. Management Technol.2(11), 27 (2013)

  32. B Hari Prasad and N Ch Pattabhi Ramacharyulu, Adv. Appl. Sci. Res. 3(6), 3491 (2012)

    Google Scholar 

  33. V I Yukalov, E P Yukalova and D Sornette, Modeling symbiosis by interactions through species carrying capacities, arXiv:1003.2092 [physics.bio-ph] (2012)

  34. S N Elaydi, An introduction to difference equations (Springer, New York, 1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krishnadas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnadas, M., Saratchandran, P.P. & Harikrishnan, K.P. Chaos in a cyclic three-species predator–prey system with a partial consumption of superpredator. Pramana - J Phys 94, 75 (2020). https://doi.org/10.1007/s12043-020-1942-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1942-9

Keywords

PACS Nos

Navigation