Skip to main content
Log in

Oxidation Behavior of Microstructured and Nanostructured Co0.94Ni0.06Sb3 Thermoelectric Materials

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The skutterudite materials such as of Co0.94Ni0.06Sb3 are widely studied for their thermoelectrical properties, i.e., their ability to produce electricity from heat. They are generally employed under vacuum but their use under oxidative environments (e.g., in air) is currently becoming an attractive perspective for power generation and a major challenge for research. The nanostructuring of the skutterudite materials is known to be an efficient solution to enhance their thermoelectric properties but the corresponding impact on the oxidation behavior of the material is still not really explored. For that purpose, this work aims at studying the oxidation behavior of microstructured Co0.94Ni0.06Sb3 and nanostructured Co0.94Ni0.06Sb3 under a flow of air at 800 K for 15 h, 100 h and 1000 h. The formation of a surface oxide layer is observed for both samples. The results show that the surface layer is a mixture of several oxide phases in various amounts depending on the oxidation time and on the structuring scale of the material. Moreover, the nanostructured skutterudite material is less affected by oxidation than the microstructured one. Indeed, the nanostructuring promotes the formation of the spinel oxide CoSb2O4/CoO·Sb2O3 that provides a long-term oxidation protection to the skutterudite material. Consequently, Co0.94Ni0.06Sb3 is established to be a promising thermoelectric material usable under oxidative environments, particularly being nanostructured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The author claim that all data and materials comply with field standards.

References

  1. M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martin-Gonzalez, RSC Advances.5, 41653 (2015).

    Article  CAS  Google Scholar 

  2. G. Rogl and P. Rogl, Current Opinion in Green and Sustainable Chemistry.4, 50 (2017).

    Article  Google Scholar 

  3. R. Drevet, L. Aranda, C. Petitjean, N. David, D. Veys-Renaux and P. Berthod, Oxidation of Metals91, 767 (2019).

    Article  CAS  Google Scholar 

  4. W. Liu, Q. Jie, H. S. Kim and Z. Ren, Acta Materialia.87, 357 (2015).

    Article  CAS  Google Scholar 

  5. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, Journal of Applied Physics.78, 1013 (1995).

    Article  CAS  Google Scholar 

  6. M. Benyahia, V. Ohorodniichuk, E. Leroy, A. Dauscher, B. Lenoir and E. Alleno, Journal of Alloys and Compounds735, 1096 (2018).

    Article  CAS  Google Scholar 

  7. J. Q. Guo, H. Y. Geng, T. Ochi, et al., Journal of Electronic Materials41, 1036 (2012).

    Article  CAS  Google Scholar 

  8. M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy and Environmental Science5, 5147 (2012).

    Article  Google Scholar 

  9. X. Shi, J. Yang, J. R. Salvador, et al., Journal of the American Chemical Society.133, 7837 (2011).

    Article  CAS  Google Scholar 

  10. E. Alleno, D. Bérardan, C. Godart, et al., Physica B: Condensed Matter383, 103 (2006).

    Article  CAS  Google Scholar 

  11. D. Bérardan, E. Alleno, C. Godart, O. Rouleau and J. Rodriguez-Carvajal, Materials Research Bulletin40, 537 (2005).

    Article  CAS  Google Scholar 

  12. E. Alleno, E. Zehani and O. Rouleau, Journal of Alloys and Compounds572, 43 (2013).

    Article  CAS  Google Scholar 

  13. A. Gharleghi and C. J. Liu, Journal of Alloys and Compounds592, 277 (2014).

    Article  CAS  Google Scholar 

  14. I. H. Kim and S. C. Ur, Metals and Materials International13, 53 (2007).

    Article  CAS  Google Scholar 

  15. R. Guo, X. Wang and B. Huang, Scientific Reports5, 7806 (2015).

    Article  CAS  Google Scholar 

  16. E. Alleno, E. Zehani, M. Gaborit, V. Orodniichuk, B. Lenoir and M. Benyahia, Journal of Alloys and Compounds692, 676 (2017).

    Article  CAS  Google Scholar 

  17. M. S. Toprak, C. Stiewe, D. Platzek, et al., Advanced Functional Materials14, 1189 (2004).

    Article  CAS  Google Scholar 

  18. J. L. Mi, T. J. Zhu, X. B. Zhao and J. Ma, Journal of Applied Physics101, 054314 (2007).

    Article  CAS  Google Scholar 

  19. G. Joshi, H. Lee, Y. Lan, et al., Nano Letters8, 4670 (2008).

    Article  CAS  Google Scholar 

  20. L. E. Bell, Science321, 1457 (2008).

    Article  CAS  Google Scholar 

  21. V. Andrei, K. Bethke and K. Rademann, Energy & Environmental Science9, 1528 (2016).

    Article  CAS  Google Scholar 

  22. R. Kühn, O. Koeppen, P. Schulze and D. Jänsch, Materials Today: Proceedings2, 761 (2015).

    Google Scholar 

  23. R. Drevet, L. Aranda, N. David, C. Petitjean, D. Veys-Renaux, P. Berthod, Surface and Coatings Technology385, 125401 (2020).

    Article  CAS  Google Scholar 

  24. A. Navrotsky and O. J. Kleppa, Journal of Inorganic and Nuclear Chemistry30, 479 (1968).

    Article  CAS  Google Scholar 

  25. H. S. C. O’Neill and A. Navrotsky, American Mineralogist68, 181 (1983).

    Google Scholar 

  26. E. Godlewska, K. Zawadzka, A. Adamczyk, M. Mitoraj and K. Mars, Oxidation of Metal74, 113 (2010).

    Article  CAS  Google Scholar 

  27. J. Leszczynski, K. T. Wojciechowski and A. L. Malecki, Journal of Thermal Analysis and Calorimetry105, 211 (2011).

    Article  CAS  Google Scholar 

  28. N. A. Asryan, A. S. Alikhanyan and G. D. Nipan, Inorganic Materials40, 626 (2004).

    Article  CAS  Google Scholar 

  29. R. A. Andrievski, Journal of Materials Science49, 1449 (2014).

    Article  CAS  Google Scholar 

  30. H. R. Peng, M. M. Gong, Y. Z. Chen and F. Liu, International Materials Reviews62, 303 (2017).

    Article  CAS  Google Scholar 

  31. L. Pauling, Journal of the American Chemical Society49, 765 (1927).

    Article  CAS  Google Scholar 

  32. R. G. Orman and D. Holland, Journal of Solid State Chemistry180, 2587 (2007).

    Article  CAS  Google Scholar 

  33. T. Karlsson, C. Forsgren and B. M. Steenari, Journal of Sustainable Metallurgy4, 194 (2018).

    Article  Google Scholar 

  34. S. Liu, B. Wen, W. Jiang, et al., Ceramics International40, 15991 (2014).

    Article  CAS  Google Scholar 

  35. F. Wu, Q. He, D. Hu, et al., Journal of Electronic Materials42, 2574 (2013).

    Article  CAS  Google Scholar 

  36. F. Timischl and N. Inoue, Ultramicroscopy186, 82 (2018).

    Article  CAS  Google Scholar 

  37. R. W. Balluffi and R. F. Mehl, Metallurgical Transactions A, Physical Metallurgy and Materials Science13, 2069 (1982).

    Article  CAS  Google Scholar 

  38. R. W. Balluffi, Metallurgical Transactions B, Process Metallurgical13, 527 (1982).

    Article  Google Scholar 

  39. R. K. S. Raman and R. K. Gupta, Corrosion Science51, 316 (2009).

    Article  CAS  Google Scholar 

  40. R. K. S. Raman, R. K. Gupta and C. C. Koch, Philosophical Magazine90, 3233 (2010).

    Article  CAS  Google Scholar 

  41. C. C. Koch, I. A. Ovid’ko, S. Seal and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  42. R. A. Andrievski, Journal of Materials Science38, 1367 (2003).

    Article  CAS  Google Scholar 

Download references

Funding

The French National Research Agency (ANR) is gratefully acknowledged for the financial support of the Nanoskut project (ANR-12-PRGE-0008-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Drevet.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevet, R., Aranda, L., Petitjean, C. et al. Oxidation Behavior of Microstructured and Nanostructured Co0.94Ni0.06Sb3 Thermoelectric Materials. Oxid Met 93, 559–572 (2020). https://doi.org/10.1007/s11085-020-09971-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09971-w

Keywords

Navigation