Skip to main content
Log in

Aggregate subgradient method for nonsmooth DC optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The aggregate subgradient method is developed for solving unconstrained nonsmooth difference of convex (DC) optimization problems. The proposed method shares some similarities with both the subgradient and the bundle methods. Aggregate subgradients are defined as a convex combination of subgradients computed at null steps between two serious steps. At each iteration search directions are found using only two subgradients: the aggregate subgradient and a subgradient computed at the current null step. It is proved that the proposed method converges to a critical point of the DC optimization problem and also that the number of null steps between two serious steps is finite. The new method is tested using some academic test problems and compared with several other nonsmooth DC optimization solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We include 148 large test problems since none of four methods succeeded in solving two other problems.

References

  1. Anstreicher, K.M., Wolsey, L.A.: Two well-known properties of subgradient optimization. Math. Program. 120(1), 213–220 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bagirov, A.M., Ganjehlou, A.N.: A quasisecant method for minimizing nonsmooth functions. Optim. Methods Softw. 25(1), 3–18 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bagirov, A.M., Jin, L., Karmitsa, N., Al Nuaimat, A., Sultanova, N.: Subgradient method for nonconvex nonsmooth optimization. J. Optim. Theory Appl. 157(2), 416–435 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: Derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, New York (2014)

    Book  Google Scholar 

  6. Bagirov, A.M., Taheri, S., Bai, F., Wu, Z.: An approximate ADMM for solving linearly constrained nonsmooth optimization problems with two blocks of variables. In: International Series in Numerical Mathematics (2019)

  7. Bagirov, A.M., Taheri, S., Joki, K., Karmitsa, N., Mäkelä, M.M.: A new subgradient based method for nonsmooth DC programming, TUCS. Tech. Rep., No. 1201, Turku Centre for Computer Science, Turku (2019)

  8. Bagirov, A.M., Taheri, S., Ugon, J.: Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems. Pattern Recognit. 53, 12–24 (2016)

    Article  Google Scholar 

  9. Bagirov, A.M., Ugon, J.: Codifferential method for minimizing nonsmooth DC functions. J. Global Optim. 50(1), 3–22 (2011)

    Article  MathSciNet  Google Scholar 

  10. Beltran, C., Heredia, F.J.: An effective line search for the subgradient method. J. Optim. Theory Appl. 125(1), 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, New York (1999)

    MATH  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  13. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19(1), 89–102 (2004)

    Article  MathSciNet  Google Scholar 

  14. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)

    Article  MathSciNet  Google Scholar 

  15. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Global Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  Google Scholar 

  16. Haarala, M., Miettinen, K., Mäkelä, M.M.: New limited memory bundle method for large-scale nonsmooth optimization. Optim. Methods Softw. 19(6), 673–692 (2004)

    Article  MathSciNet  Google Scholar 

  17. Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20(5), 2442–2473 (2010)

    Article  MathSciNet  Google Scholar 

  19. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Global Optim. 68, 501–535 (2017)

    Article  MathSciNet  Google Scholar 

  20. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for nonsmooth DC optimization, TUCS. Tech. Rep., No. 1173, Turku Centre for Computer Science, Turku (2017)

  21. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kappel, F., Kuntsevich, A.V.: An implementation of Shor’s \(r\)-algorithm. Comput. Optim. Appl. 15(2), 193–205 (2000)

    Article  MathSciNet  Google Scholar 

  23. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)

    Book  Google Scholar 

  24. Le Thi Hoai, A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Global Optim. 11, 253–285 (1997)

    Article  MathSciNet  Google Scholar 

  25. Le Thi Hoai, A., Pham Dinh, T.: The DC (differnece of convex functions) programming and DCA revised with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83(1), 373–391 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific, Singapore (1992)

    Book  Google Scholar 

  28. Mifflin, R., Sun, D., Qi, L.: Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM J. Optim. 8(2), 583–603 (1998)

    Article  MathSciNet  Google Scholar 

  29. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  Google Scholar 

  30. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. 120(1), 221–259 (2009)

    Article  MathSciNet  Google Scholar 

  31. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987)

    MATH  Google Scholar 

  32. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)

    Book  Google Scholar 

  33. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10, 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  34. Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Global Optim. 12, 415–434 (1998)

    Article  MathSciNet  Google Scholar 

  35. Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrescht (1998)

    Book  Google Scholar 

Download references

Acknowledgements

This research by Dr. Adil Bagirov and Dr. Sona Taheri was supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (Project No. DP190100580). The research by Dr. Napsu Karmitsa and Dr. Sona Taheri was supported by the Academy of Finland (Projects Nos. 289500 and 319274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagirov, A.M., Taheri, S., Joki, K. et al. Aggregate subgradient method for nonsmooth DC optimization. Optim Lett 15, 83–96 (2021). https://doi.org/10.1007/s11590-020-01586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01586-z

Keywords

Navigation