Skip to main content
Log in

Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study

  • Water Resources and Hydrologic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Improvement in area of artificial intelligence for predicting different hydrological phenomenon has shaped an enormous alteration in predictions. Knowledge on suspended sediment load (SSL) is vital in managing water resources problems and safe guard environment. Present study evaluated accurateness of five soft computing techniques, i.e. radial basis function network (RBFN), cascade forward back propagation neural network (CFBPNN), support vector machine (SVM), integration of support vector machine with firefly algorithm (SVM-FFA) and phase space reconstruction (PSR) with SVM-FFA (PSR-SVM-FFA) approaches to estimate daily SSL in Salebhata, Suktel, Lant gauge stations in western part of Odisha, India. Performance of selected models were evaluated on basis of performance criterion namely root mean square error (RMSE), Nash-Sutcliffe (NSE), Wilton index (WI) for choosing best fit model. Results acquired verified that application of various neural network methods in present field of study showed fine concurrence with observed SSL values. Comparison of estimation accuracies of different methods exemplified that PSR-SVM-FFA is very precise to estimate SSL when compared with other models. Result shows that Suktel gauge station, the best value of WI is 0.978 for PSR-SVM-FFA model, while it is 0.959, 0.923, 0.885, and 0.842 for SVM-FFA, SVM, CFBPNN, RBFN models in testing phase. Moreover, cumulative SSL data calculated by PSR-SVM-FFA method are closer to observed data as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adib A, Mahmoodi A (2017) Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions. KSCE Journal of Civil Engineering 21(1):447–457, DOI: 10.1007/s12205-016-0444-2

    Google Scholar 

  • Afan HA, El-Shafie A, Yaseen ZM, Hameed MM, Mohtar WHMW, Hussain A (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resources Management 29(4):1231–1245, DOI: 10.1007/s11269-014-0870-1

    Google Scholar 

  • Azamathullah HM, Ghani AA, Chang CK, Abu Hasan Z, Zakaria NA (2010) Machine learning approach to predict sediment load — A case study. CLEAN — Soil, Air, Water 38(10):969–976, DOI: 10.1002/ clen.201000068

    Google Scholar 

  • Azamathulla HM, Ghani AA, Fei SY (2012) ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing 12(3):1227–1230, DOI: 10.1016/j.asoc.2011.12.003

    Google Scholar 

  • Bayram A, Kankal M, Onsoy H (2012) Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment 184(7): 4355–4365, DOI: 10.1007/s10661-011-2269-2

    Google Scholar 

  • Boukhrissa ZA, Khanchoul K, Le Bissonnais Y, Tourki M (2013) Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria. Journal of Earth System Science 122(5):1303–1312, DOI: 10.1007/s12040-013-0347-2

    Google Scholar 

  • Bouzeria H, Ghenim AN, Khanchoul K (2017) Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria. Journal of Water and Land Development 33(1):47–55, DOI: 10.1515/jwld-2017-0018

    Google Scholar 

  • Chen X Y, Chau KW (2016) A hybrid double feedforward neural network for suspended sediment load estimation. Water Resources Management 30(7):2179–2194, DOI: 10.1007/s11269-016-1281-2

    Google Scholar 

  • Ebtehaj I, Bonakdari H (2013) Evaluation of sediment transport in sewer using artificial neural network. Engineering Applications of Computational Fluid Mechanics 7(3):382–392, DOI: 10.1080/ 19942060.2013.11015479

    Google Scholar 

  • Ebtehaj I, Bonakdari H (2016) Bed load sediment transport estimation in a clean pipe using multilayer perceptron with different training algorithms. KSCE Journal of Civil Engineering 20(3):581–589, DOI: 10.1007/s12205-015-0630-7

    Google Scholar 

  • Ghani AA, Azamathulla HMd, Chang CK, Zakaria NA, Abu Hasan Z (2011) Prediction of total bed material load for rivers in Malaysia: A case study of langat, muda and Kurau Rivers. Journal of Environmental Fluid Mechanics 11(3):307–318, DOI: 10.1007/s10652-010-9177-9

    Google Scholar 

  • Ghose DK, Samantaray S (2019) Sedimentation process and its assessment through integrated sensor networks and machine learning process. Computational Intelligence in Sensor Networks, Studies in Computational Intelligence 776:473–488, DOI: 10.1007/978-3-662-57277-1_20

    Google Scholar 

  • Goyal MK (2014) Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression. Water Resources Management 28(7):1991–2003, DOI: 10.1007/s11269-014-0590-6

    Google Scholar 

  • Guven A, Kişi O (2011) Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resources Management 25(2):691–704, DOI: 10.1007/ s11269-010-9721-x

    Google Scholar 

  • Hassan M, Shamim MA, Sikandar A, Mehmood I, Ahmed I, Ashiq SZ, Khitab A (2015) Development of sediment load estimation models by using artificial neural networking techniques. Environmental Monitoring and Assessment 187(11):686, DOI: 10.1007/s10661-015-4866-y

    Google Scholar 

  • Huang CC, Fang HT, Ho HC, Jhong BC (2019) Interdisciplinary application of numerical and machine-learning-based models to predict half-hourly suspended sediment concentrations during typhoons. Journal of Hydrology 573:661–675, DOI: 10.1016/j.jhydrol.2019. 04.001

    Google Scholar 

  • Ju Q, Yu Z, Hao Z, Ou G, Zhao J, Liu, D (2009) Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing 72(13-15):2873–2883, DOI: 10.1016/j.neucom.2008. 12.032

    Google Scholar 

  • Kişi O (2010) River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology 389(1-2):227–235, DOI: 10.1016/j.jhydrol.2010.06.003

    Google Scholar 

  • Kisi O (2012) Modeling discharge-suspended sediment relationship using least square support vector machine. Journal of hydrology 456:110–120, DOI: 10.1016/j.jhydrol.2012.06.019

    Google Scholar 

  • Kisi O, Dailr AH, Cimen M, Shiri J (2012a) Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology 450:48–58, DOI: 10.1016/j.jhydrol.2012.05.031

    Google Scholar 

  • Kisi O, Ozkan C, Akay B (2012b) Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. Journal of Hydrology 428:94–103, DOI: 10.1016/j.jhydrol.2012.01.026

    Google Scholar 

  • Kisi O, Shiri J (2012) River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers & Geosciences 43:73–82, DOI: 10.1016/j.cageo.2012.02.007

    Google Scholar 

  • Kumar S, Ojha AR, Goyal CSP, Singh RD, Swamee PK (2011) Modeling of suspended sediment concentration at Kasol in India using ANN, fuzzy logic, and decision tree algorithms. Journal of Hydrologic Engineering 17(3):394–404, DOI: 10.1061/(ASCE)HE. 1943-5584.0000445

    Google Scholar 

  • Lafdani EK, Nia AM, Ahmadi A (2013) Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology 478:50–62, DOI: 10.1016/j.jhydrol. 2012.11.048

    Google Scholar 

  • Liu QJ, Shi ZH, Fang NF, Zhu HD, Ai L (2013) Modeling the daily suspended sediment concentration in a hyper concentrated river on the Loess Plateau, China, using the Wavelet-ANN approach. Geomorphology 186:181–190, DOI: 10.1016/j.geomorph.2013.01.012

    Google Scholar 

  • Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management 98(5): 855–866, DOI: 10.1016/j.agwat.2010.12.012

    Google Scholar 

  • Mirbagheri SA, Nourani V, Rajaee T, Alikhani A (2010) Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrological Sciences Journal- Journal des Sciences Hydrologiques 55(7):1175–1189, DOI: 10.1080/02626667.2010.508871

    Google Scholar 

  • Mustafa MR, Rezaur RB, Saiedi S, Isa MH (2012) River suspended sediment prediction using various multilayer perceptron neural network training algorithms-a case study in Malaysia. Water Resources Management 26(7):1879–1897, DOI: 10.1007/s11269-012-9992-5

    Google Scholar 

  • Nagy HM, Watanabe KAND, Hirano M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering 128(6):588–595, DOI: 10.1061/ (ASCE)0733-9429(2002)128:6(588)

    Google Scholar 

  • Nourani V, Andalib G (2015) Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science 12(1):85–100, DOI: 10.1007/s11629-014-3121-2

    Google Scholar 

  • Nourani V, Kalantari O, Baghanam AH (2012) Two semidistributed ANN-based models for estimation of suspended sediment load. Journal of Hydrologic Engineering 17(12):1368–1380, DOI: 10.1061/ (ASCE)HE.1943-5584.0000587

    Google Scholar 

  • Olyaie E, Banejad H, Chau KW, Melesse AM (2015) A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environmental Monitoring and Assessment 187(4):189, DOI: 10.1007/s10661-015-4381-1

    Google Scholar 

  • Rajaee T (2011) Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Science of the Total Environment 409(15):2917–2928, DOI: 10.1016/j.scitotenv.2010.11.028

    Google Scholar 

  • Rajaee T, Mirbagheri SA, Nourani V, Alikhani A (2010a) Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model. International Journal of Environmental Science & Technology 7(1):93–110, DOI: 10.1007/BF03326121

    Google Scholar 

  • Rajaee T, Nourani V, Zounemat-Kermani M, Kisi O (2010b) River suspended sediment load prediction: Application of ANN and wavelet conjunction model. Journal of Hydrologic Engineering 16(8):613–627, DOI: 10.1061/(ASCE)HE.1943-5584.0000347

    Google Scholar 

  • Riahi-Madvar H, Ayyoubzadeh SA, Atani MG (2011) Developing an expert system for predicting alluvial channel geometry using ANN. Expert Systems with Applications 38(1):215–222, DOI: 10.1016/j.eswa.2010.06.047

    Google Scholar 

  • Samantaray S, Ghose DK (2018) Evaluation of suspended sediment concentration using descent neural networks. Procedia Computer Science 132:1824–1831, DOI: 10.1016/j.procs.2018.05.138

    Google Scholar 

  • Samantaray S, Ghose DK (2019) Sediment assessment for a watershed in arid region via neural networks. Sādhanā 44(10):219, DOI: 10.1007/s12046-019-1199-5

    Google Scholar 

  • Samantaray S, Ghose DK (2020) Assessment of suspended sediment load with neural networks in arid watershed. Journal of the Institution of Engineers (India): Series A (2020), DOI: 10.1007/s40030-019-00429-0

    Google Scholar 

  • Samantaray S, Sahoo A (2020) Assessment of sediment concentration through RBNN and SVM-FFA in arid watershed, India. In: Satapathy S, Bhateja V, Mohanty J, Udgata S (eds) Smart intelligent computing and applications. Springer, Singapore, DOI: 10.1007/978-981-13-9282-5_67

    Google Scholar 

  • Shamshirband S, Petković D, Pavlović NT, Ch S, Altameem TA, Gani A (2015) Support vector machine firefly algorithm based optimization of lens system. Applied Optics 54(1):37–45, DOI: 10.1364/AO.54. 000037

    Google Scholar 

  • Singh A, Imtiyaz M, Isaac RK, Denis DM (2012) Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agricultural Water Management 104:113–120, DOI: 10.1016/j.agwat.2011.12.005

    Google Scholar 

  • Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M (2010) Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management 24(9):1747–1761, DOI: 10.1007/s11269-009-9522-2

    Google Scholar 

  • Tayfur G, Karimi Y, Singh VP (2013) Principle component analysis in conjuction with data driven methods for sediment load prediction. Water Resources Management 27(7):2541–2554, DOI: 10.1007/s11269-013-0302-7

    Google Scholar 

  • Uca Toriman E, Jaafar O, Maru R, Arfan A, Ahmar AS (2018) Daily suspended sediment discharge prediction using multiple linear regression and artificial neural network. Journal of Physics: Conference Series 954(1):012030, DOI: 10.1088/1742-6596/954/1/ 012030

    Google Scholar 

  • Yang XS (2010) Firefly algorithm, Lévy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, London, UK, 209–218, DOI: 10.1007/978-1-84882-983-1_15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Samantaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samantaray, S., Sahoo, A. & Ghose, D.K. Assessment of Sediment Load Concentration Using SVM, SVM-FFA and PSR-SVM-FFA in Arid Watershed, India: A Case Study. KSCE J Civ Eng 24, 1944–1957 (2020). https://doi.org/10.1007/s12205-020-1889-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-020-1889-x

Keywords

Navigation