Skip to main content
Log in

Preparation of graphene/graphene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene/graphene nanoribbons hybrid aerogel (GA/GNRs) was prepared via a hydrothermal process by using graphene oxide as precursor, and the graphene oxide nanoribbons unzipped from multi-walled carbon nanotubes were compound together. Various techniques were used to investigate the morphology, surface properties and structure of aerogel samples. Besides, the adsorption properties of the hybrid aerogel for the removal of U(VI) were further studied. The results showed that GNRs was grafted on the surface of graphene, and the specific surface area and porous pores structure were enhanced. The adsorption process of hybrid aerogel for U(VI) was pH-dependent, rapid, spontaneous and endothermic, and the maximum adsorption capacity for U(VI) was calculated to be 327.8 mg/g, which is expected to separate uranium from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lourenço J, Marques S, Carvalho FP et al (2017) Uranium mining wastes: the use of the fish embryo acute toxicity test (FET) test to evaluate toxicity and risk of environmental discharge. Sci Total Environ 605–606:391–404. https://doi.org/10.1016/j.scitotenv.2017.06.125

    Article  CAS  PubMed  Google Scholar 

  2. Ochiai A, Imoto J, Suetake M et al (2018) Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol 52:2586–2594. https://doi.org/10.1021/acs.est.7b06309

    Article  CAS  PubMed  Google Scholar 

  3. Schneider E, Carlsen B, Tavrides E et al (2013) Measures of the environmental footprint of the front end of the nuclear fuel cycle. Energy Econ 40:898–910. https://doi.org/10.1016/j.eneco.2013.01.002

    Article  Google Scholar 

  4. Rosenberg E, Pinson G, Tsosie R et al (2016) Uranium remediation by ion exchange and sorption methods: a critical review. Johnson Matthey Technol Rev 60:59–77. https://doi.org/10.1595/205651316X690178

    Article  CAS  Google Scholar 

  5. Dang DH, Novotnik B, Wang W et al (2016) Uranium isotope fractionation during adsorption, (co)precipitation, and biotic reduction. Environ Sci Technol 50:12695–12704.https://doi.org/10.1021/acs.est.6b01459

    Article  CAS  PubMed  Google Scholar 

  6. Mehta VS, Maillot F, Wang Z et al (2014) Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate. Chem Geol 364:66–75. https://doi.org/10.1016/j.chemgeo.2013.12.002

    Article  CAS  Google Scholar 

  7. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184. https://doi.org/10.1016/j.chemgeo.2013.10.034

    Article  CAS  Google Scholar 

  8. Kumar JR, Kim JS, Lee JY, Yoon HS (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760

    Article  CAS  Google Scholar 

  9. Higginbotham AL, Kosynkin DV, Sinitskii A et al (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4:2059–2069. https://doi.org/10.1021/nn100118m

    Article  CAS  PubMed  Google Scholar 

  10. Wu P, Wang Y, Hu X et al (2019) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Chem 319:1111–1118. https://doi.org/10.1007/s10967-018-6375-2

    Article  CAS  Google Scholar 

  11. Wang Y, Wang Z, Ang R et al (2015) Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). RSC Adv 5:89309–89318. https://doi.org/10.1039/c5ra15977f

    Article  CAS  Google Scholar 

  12. Cheng C, Han H, Ren CL et al (2016) Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons. Chin Phys B 8:284–290. https://doi.org/10.1088/1674-1056/25/8/086301

    Article  CAS  Google Scholar 

  13. Xiu T, Liu Z, Wang Y et al (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319:1059–1067. https://doi.org/10.1007/s10967-019-06417-9

    Article  CAS  Google Scholar 

  14. Wu P, Wang Y, Li Y et al (2019) Adsorption of Th(IV) from aqueous solution by the graphene oxide nanoribbons/chitosan composite material. J Radioanal Nucl Chem 322:553–559. https://doi.org/10.1007/s10967-019-06725-0

    Article  CAS  Google Scholar 

  15. Miwa M, Nakajima A, Fujishima A et al (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760. https://doi.org/10.1021/la991660o

    Article  CAS  Google Scholar 

  16. Bell MS, Shahraz A, Fichthorn KA, Borhan A (2015) Effects of hierarchical surface roughness on droplet contact angle. Langmuir 31:6752-6762. https://doi.org/10.1021/acs.langmuir.5b01051

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Yang S, Ma Q et al (2017) Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon 118:765–771. https://doi.org/10.1016/j.carbon.2017.04.001

    Article  CAS  Google Scholar 

  18. Fan W, Wang D, Sun Z et al (2019) Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe2 nanosheets as an efficient electrocatalyst for hydrogen evolution. Inorg Chem Front 6:1209–1216. https://doi.org/10.1039/c9qi00064j

    Article  CAS  Google Scholar 

  19. Chen L, Du R, Zhang J, Yi T (2015) Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels. J Mater Chem A 3:20547–20553. https://doi.org/10.1039/c5ta04370k

    Article  CAS  Google Scholar 

  20. He YR, Li SC, Li XL et al (2018) Graphene (rGO) hydrogel: a promising material for facile removal of uranium from aqueous solution. Chem Eng J 338:333–340. https://doi.org/10.1016/j.cej.2018.01.037

    Article  CAS  Google Scholar 

  21. Ding Y, Zhu J, Wang C et al (2016) Multifunctional three-dimensional graphene nanoribbons composite sponge. Carbon N Y 104:133–140. https://doi.org/10.1016/j.carbon.2016.03.058

    Article  CAS  Google Scholar 

  22. Sun Z, Fan W, Liu T (2017) Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. Electrochim Acta 250:91–98. https://doi.org/10.1016/j.electacta.2017.08.009

    Article  CAS  Google Scholar 

  23. Kim KH, Oh Y, Islam MF (2012) Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotechnol 7:562–566. https://doi.org/10.1038/nnano.2012.118

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Du R, Zhu J et al (2015) Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 11:1423–1429. https://doi.org/10.1002/smll.201402472

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Wu Y, Jiang Z et al (2018) Formation mechanism of 3D macroporous graphene aerogel in alcohol-water media under gamma-ray radiation. Appl Surf Sci 427:1144–1151. https://doi.org/10.1016/j.apsusc.2017.09.058

    Article  CAS  Google Scholar 

  26. He Y, Li J, Li L, Li J (2016) Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel. Mater Lett 177:76–79. https://doi.org/10.1016/j.matlet.2016.04.187

    Article  CAS  Google Scholar 

  27. Lim MB, Hu M, Manandhar S et al (2015) Ultrafast sol-gel synthesis of graphene aerogel materials. Carbon N Y 95:616–624. https://doi.org/10.1016/j.carbon.2015.08.037

    Article  CAS  Google Scholar 

  28. Lim J, Lee GY, Lee HJ et al (2019) Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: fast mass transport electrodes for high-performance biosensing and energy storage. Energy Storage Mater 16:251–258. https://doi.org/10.1016/j.ensm.2018.06.004

    Article  Google Scholar 

  29. Ma J, Li C, Yu F, Chen J (2014) 3D single-walled carbon nanotube/graphene aerogels as Pt-free transparent counter electrodes for high efficiency dye-sensitized solar cells. Chemsuschem 7:3304–3311. https://doi.org/10.1002/cssc.201403062

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Yue L, Liu ZT et al (2012) Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water. J Mater Chem 22:14101–14107. https://doi.org/10.1039/c2jm32175k

    Article  CAS  Google Scholar 

  31. Hyun SP, Davis JA, Sun K, Hayes KF (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46:3369–3376. https://doi.org/10.1021/es203786p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21966005, 21601033, 21661003, 11705027, 21866006, 11875105), and East China University of Technology Graduate Innovation Fund Project (DHYC-201906), and the Natural Science Foundation of Jiangxi Province(20192BAB202007) and Key project of Jiangxi Natural Science Foundation (20192ACB21001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, Y., Wu, P. et al. Preparation of graphene/graphene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions. J Radioanal Nucl Chem 325, 207–215 (2020). https://doi.org/10.1007/s10967-020-07208-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07208-3

Keywords

Navigation